Monterey Equity Pty Ltd C/- Donald Cant Watts Cork

Contamination Assessment: Lot 2, DP857520, 119 Barton Street, Monterey, NSW

ENVIRONMENTAL

WATER

WASTEWATER

GEOTECHNICAL

CIVIL

PROJECT MANAGEMENT

P1706332JR01V01 March 2018

Copyright Statement

Martens & Associates Pty Ltd (Publisher) is the owner of the copyright subsisting in this publication. Other than as permitted by the Copyright Act and as outlined in the Terms of Engagement, no part of this report may be reprinted or reproduced or used in any form, copied or transmitted, by any electronic, mechanical, or by other means, now known or hereafter invented (including microcopying, photocopying, recording, recording tape or through electronic information storage and retrieval systems or otherwise), without the prior written permission of Martens & Associates Pty Ltd. Legal action will be taken against any breach of its copyright. This report is available only as book form unless specifically distributed by Martens & Associates in electronic form. No part of it is authorised to be copied, sold, distributed or offered in any other form.

The document may only be used for the purposes for which it was commissioned. Unauthorised use of this document in any form whatsoever is prohibited. Martens & Associates Pty Ltd assumes no responsibility where the document is used for purposes other than those for which it was commissioned.

Limitations Statement

The sole purpose of this report and the associated services performed by Martens & Associates Pty Ltd is to provide a Contamination Assessment at the subject site in accordance with the scope of services set out in the contract / quotation between Martens & Associates Pty Ltd and Monterey Equity Pty Ltd C/- Donald Cant Watts Cork (hereafter known as the Client).

Martens & Associates Pty Ltd derived the data in this report primarily from a number of sources which may include for example site inspections, correspondence regarding the proposal, examination of records in the public domain, interviews with individuals with information about the site or the project, and field explorations conducted on the dates indicated. The passage of time, manifestation of latent conditions or impacts of future events may require further examination / exploration of the site and subsequent data analyses, together with a re-evaluation of the findings, observations and conclusions expressed in this report.

In preparing this report, Martens & Associates Pty Ltd may have relied upon and presumed accurate certain information (or absence thereof) relative to the site. Except as otherwise stated in the report, Martens & Associates Pty Ltd has not attempted to verify the accuracy of completeness of any such information (including for example survey data supplied by others).

The findings, observations and conclusions expressed by Martens & Associates Pty Ltd in this report are not, and should not be considered an opinion concerning the completeness and accuracy of information supplied by others. No warranty or guarantee, whether express or implied, is made with respect to the data reported or to the findings, observations and conclusions expressed in this report. Further, such data, findings and conclusions are based solely upon site conditions, information and drawings supplied by the Client etc. in existence at the time of the investigation.

This report has been prepared on behalf of and for the exclusive use of the Client, and is subject to and issued in connection with the provisions of the agreement between Martens & Associates Pty Ltd and the Client. Martens & Associates Pty Ltd accepts no liability or responsibility whatsoever for or in respect of any use of or reliance upon this report by any third party.

© March 2018 Copyright Martens & Associates Pty Ltd All Rights Reserved

Head Office

Suite 201, 20 George Street Hornsby, NSW 2077, Australia ACN 070 240 890 ABN 85 070 240 890 **Phone: +61-2-9476-9999** Fax: +61-2-9476-8767 Email: mail@martens.com.au Web: www.martens.com.au

Document and Distribution Status								
Author(s)			Reviewer(s)		Project Manager		Signo	ature
Robert Mehaffey		Gray Taylor Andrew Norris		Gray Taylor		Wray Ingh.		
			Document Location					
Revision No.	Status	Release Date	File Copy	Monterey Equity Pty Ltd	Donald Cant Watts Cork			
1	Draft	05.03.2018	1E, 1P	1P	1P			
1	Final	13.03.2018	1E, 1P	1P	1P			

Distribution Types: F = Fax, H = hard copy, P = PDF document, E = Other electronic format. Digits indicate number of document copies.

All enquiries regarding this project are to be directed to the Project Manager.

Contents

1 OVERVIEW
1.1 Introduction 6
1.2 Objectives 6
1.3 Project Scope6
1.4 Abbreviations 7
2 SITE DESCRIPTION
2.1Site Location and Existing Land Use9
2.2 Hydrogeology10
3 SITE BACKGROUND ASSESSMENT 11
3.1 Historical Site Records Review 11
3.2 NSW EPA Records 11
3.3 Historical Aerial Photograph Review12
3.4 Walkover Site Inspection12
4 POTENTIAL FOR CONTAMINATION
4.1 Areas of Environmental Concern/Contaminants of Potential Concern 14
4.2 Sensitive Receptors and Exposure Pathways 14
4.3 Preliminary site investigation conclusions 15
5 SITE SAMPLING OVERVIEW 16
5.1 Objectives 16
5.2 Reference Guidelines 16
6 SAMPLING, ANALYTICAL AND QUALITY PLAN (SAQP) 17
6.1 Data Quality Objectives (DQO)17
6.2 Data Quality Indicators (DQI) 18
6.3 Investigation and Sampling Methodology and Quality Assurance / Quality Control 19
6.4 Laboratory Analytical Suite 20
7 SITE ASSESSMENT CRITERIA
7.1 Overview 21
7.2 Adopted ElLs 22
8 LABORATORY ANALYTICAL RESULTS
9 DISCUSSIONS
9.1Samples Exceeding SAC25
9.2 95% UCL Analysis 25
9.3 Data Gaps 26
9.4 Acid Sulphate Soils (ASS)26
10 CONCLUSION AND DISCUSSIONS
11 LIMITATIONS STATEMENT

REFERENCES	29
12 ATTACHMENT A – HISTORIC AERIAL PHOTOGRAPHS AND SITE LOCATION	30
13 ATTACHMENT B – BAYSIDE COUNCIL CORRESPONDENCE	37
14 ATTACHMENT C – AEC MAP	39
15 ATTACHMENT D – SAMPLING PLAN	41
16 ATTACHMENT E – BOREHOLE LOGS	43
17 ATTACHMENT F – DATA VALIDATION REPORT	54
18 ATTACHMENT G – LABORATORY ANALYTICAL DOCUMENTATION	61
19 ATTACHMENT H – LABORATORY SUMMARY TABLES 1	04
20 ATTACHMENT I – UCL CALCULATIONS 1	08

1 Overview

1.1 Introduction

This report, prepared by Martens and Associates (MA), documents a contamination assessment which includes a preliminary site investigation (PSI) with limited testing to support a rezoning application to allow future residential subdivision of 119 Barton Street, Monterey, NSW ('the site').

The location of the site is shown in PS01-AZ06, Attachment A.

1.2 Objectives

Investigation objectives include:

- Identification of historic and current potentially contaminating site activities.
- Evaluation of areas of environmental concern (AEC) and associated contaminants of potential concern (COPC) within investigation area.
- Assess identified AECs and associated COPCs.
- Assess potential sources of site contamination identified in the preliminary investigation.
- Provide comment on suitability of investigation area for future development use, and where required, provide recommendations for remediation.

1.3 Project Scope

Scope of work included:

- Site walkover inspection to assess existing land condition and potential for site contamination.
- Review of 6 historical aerial photographs to assess past land use.
- Review of relevant Bayside Council historical database data (eg. BCC DA/BA history).

- Review of other relevant databases (SafeWork NSW and NSW EPA).
- Identification of AECs & COPCs.
- Conduct soil sampling in AECs. Sampling undertaken in general accordance with NSW EPA (1995) Site Sampling Guidelines. Investigations completed using hand methods (for surface samples) and hydraulic drill rig and push tube (for boreholes).
- Laboratory testing of soil contaminants of potential concern (COPC) within each AEC. For QA/QC purposes, duplicates and trip spike/blank samples were collected and analysed.
- Findings of the intrusive soil investigation documented in general accordance with NSW OEH (2011) and NEPM (1999, amended 2013).

1.4 Abbreviations

AEC – Area of environmental concern

ASC NEPM – Assessment of site contamination (National Environmental Protection Measure)

BA – Building application

BC – Bayside Council

BTEXN – Benzene, toluene, ethyl benzene, xylene and naphthalene

COPC - Contaminants of potential concern

DA – Development application

DEC – NSW Department of Environment and Conservation

DP – Deposited Plan

DPI – NSW Department of Primary Industries

DQI – Data quality indicators

DQO – Data quality objective

EIL – Ecological Investigation Levels

- EPA NSW Environment Protection Authority
- EQL Estimated quantitation limit
- ESL Ecological Screening Levels
- HIL Health investigation level
- HM Heavy metal
- HSL Health screening level
- LGA Local government area
- MA Martens and Associates Pty Ltd
- mAHD Metres Australian height datum
- NATA National Association of Testing Authorities
- OCP Organochloride pesticides
- OEH NSW Office of Environment and Heritage
- OPP Organophosphate pesticides
- PAH Polycyclic aromatic hydrocarbons
- PSI Preliminary site investigation
- RPD Relative percentage difference difference between two values divided by the average
- SAC Site acceptance criteria
- SAQP Sampling analytical and quality plan
- SOP Standard operating procedure
- TRH Total recoverable hydrocarbons

2 Site Description

2.1 Site Location and Existing Land Use

Site information is summarised in Table 1, and site location and general surrounds shown in PS01-AZ06, Attachment A.

n.
r

Item	Description / Detail
Site address, lot/DP, and approximate area	119 Barton Street, Monterey, NSW (Lot 2, DP857520) – 7,202 m ² (Approx.)
Local Government Area (LGA)	Bayside Council (BC)
Current land use	Site is currently a recreational bowling green, club house and car park.
Proposed land use	Residential.
Site description	The lot currently has two bowling greens, a bowling club in the southern portion of the site and a carpark in the northeast portion of the site.
Surrounding land uses	The site is bordered by Barton Street to the north and residential properties to the east, south and west.
Topography	Site is generally flat. Site elevations range from approximately 6 mAHD in the northeast corner of the site to approximately 5 mAHD in the western border of the site.
Expected geology	The Sydney 1:100,000 Geological Series Sheet 9130 (1983) indicates that the site is underlain by quaternary deposits comprised of quartz sand, minor shell content, interdune (swale) silt and fine sand. The NSW Environment and Heritage eSPADE website identifies the site as having soils of the Tuggerah soil landscape, consisting of deep (>200 cm) podzols on dunes and podzols/humus podzol intergrades on swales.
Site drainage	A stormwater planning assessment completed by ADG Engineers Australia Pty Ltd (2016) concluded that all stormwater runoff generated at the site is contained within the site boundaries and is discharged via infiltration into sandy soils.
Sensitive receptors	Future site residents and visitors. Site workers during future construction works. Surrounding residential site occupants.

2.2 Hydrogeology

Review of the NSW Department of Primary Industries (DPI) Water's database provided the following information for the five closest groundwater bores (with relevant information) to the site (Table 2).

Groundwater Bore Identification	Direction and Distance	Standing Water Level (m)	Intended Use	Water Bearing Zone Substrate
GW100520	On site	NE ¹ (7 mBGL)	Recreation	ND ²
GW106456	Approximately 15 m south	NE ¹ (6 mBGL)	Domestic	ND ²
GW108549	Approximately 10 m east	5.0 mBGL	Domestic	Sand
GW108550	Approximately 10 m east	5.0 mBGL	Domestic	Sand
GW108652	Approximately 15 m east	5.0 mBGL	Domestic	Sand

<u>Notes</u>

¹ NE – Groundwater not encountered (maximum depth of well).

² ND – No data available.

Borehole investigations undertaken by MA encountered groundwater at depths of 1.4 - 3.0 mBGL.

In consideration of hydrogeological information at the site, it is unlikely that groundwater is a significant potential contamination pathway.

3 Site Background Assessment

3.1 Historical Site Records Review

Four records exist at Bayside Council (BC) for development applications and building plans at the site (Table 3). BC correspondence is provided in Attachment B.

Year	Record No.	Description
1995	BA-1995/696	Construction of outbuilding shed.
1995	BA-1995/736	Building application for villas and townhouses (13 units).
1996	BA-1996/134	Club additions.
2008	DA-2008/195	Minor alterations to club,

Table 3: Site history information.

3.2 NSW EPA Records

No notices for the suburb of Monterey or nearby suburbs were listed under the Contaminated Land Management Act (1997) or the Environmentally Hazardous Chemicals Act (1985).

One record within the Monterey area is identified on the list of NSW contaminated sites notified to the EPA (Table 4).

 Table 4: Available EPA contaminated lands record information.

Suburb	Address	Details	Distance/ Orientation From Site
			Southwest,
Monterey/Kogarah	Scarborough Park	Former landfill	approximately
	30011	30011	

The above site is at a lower elevation than the subject site. Due to distance to the site and local hydrological characteristics, it is unlikely that the above site would have caused near surface soil contamination at the subject site.

3.3 Historical Aerial Photograph Review

Historical aerial photographs taken of the site during 1943, 1961, 1975, 1991, 2009 and 2018 were reviewed to investigate historic site land uses (Table 5). Copies of aerial photographs are provided in Attachment A. Photos indicate that the site may have used as a recreational bowling green since some time before 1961. Historical aerials did not indicate any other site use.

 Table 5: Historic aerial photograph observations 1943 – 2018

Year	Site	Surrounding Land Use
1943	The site appears unused, a potential pond (approximately 1500 m ²) is present in the eastern portion of the site. Rest of the site has scattered bushes and is undeveloped.	Residential properties to the north, east and south. Cleared, vacant land to the west and south east of the site.
1961	Site has been developed into bowling greens with bowling club in the southern portion of the site and carpark in the northern portion of the site.	Lot immediately east of the site is also being used as part of the bowling green development. Continued residential development in all directions.
1975	Little change from previous.	Little change from previous.
1991	Little change from previous.	Little change from previous.
2009	Bowling green area along the eastern boundary has been redeveloped into additional carpark space.	Lot immediately east of the site (previously part of the bowling green) has been redeveloped into residential housing.
2018	Little change from previous.	Little change from previous.

3.4 Walkover Site Inspection

Site walkover was conducted on 14 February, 2018 by an experienced MA environmental engineer in conjunction with PSI investigations. Observations are summarised below.

- Timber and brick clad bowling club along the southern boundary of the site.
- Asphalt driveway and carpark in the north and eastern portions of the site.
- \circ $\;$ Two artificial turf bowling greens in the central portion of the site.

- Brick and galvanised metal sheds in the northern portion of the site, directly north of existing bowling greens.
- Stockpile of timber, plastic and glass immediately west of brick and galvanised sheds in the northern portion of the site.
- Site likely filled for levelling purposes (primarily under bowling greens and carpark).

4 **Potential for Contamination**

4.1 Areas of Environmental Concern/Contaminants of Potential Concern

Our assessment of site AECs and COPCs (Table 6) for the investigation area is made on the basis of available site history, aerial photograph interpretation and site walkover. A map showing locations of identified AECs is provided in Attachment C.

 Table 6: Areas of environmental concern and contaminants of potential concern.

AEC 1	Potential for Contamination	COPC
AEC A – Existing bowling club	Pesticides and heavy metals may have been used underneath building for pest control. Building may include potential asbestos containing material (PACM) and/or lead based paints.	HM, OCP/OPP and asbestos.
AEC B – Former pond	Former site pond has been filled in for construction of bowling club and encountered during geotechnical investigations (Douglas Partners, 2016). Fill of unknown origin and quality has been used.	HM, TRH, BTEXN, PAH, OCP/OPP and asbestos.
AEC C (entire site) – Site filling	Fill of unknown origin and quality was, likely used for site levelling purposes. Fill of unknown origin and quality has been used.	HM, OCP/OPP.
AEC D – Bowling greens	Prior to construction of artificial turf bowling greens, herbicides and pesticides are likely to have been used.	HM, OCP/OPP.

<u>Notes</u>

¹ Locations identified on AEC map in Attachment C.

4.2 Sensitive Receptors and Exposure Pathways

Table 7 provides a summary of identified sensitive receptors and potential exposure pathways connecting receptors to identified AECs and COPCs outlined in Table 6.

	, , ,		,
	Receptor		Pathway
<u>Humar</u>	n Receptors:		
0	Future site residents and visitors.	0	Dermal contact.
0	Site workers during future construction works.	0	Oral ingestion of potentially contaminated soil.
0	Surrounding residents.		
Enviror	nmental Receptors		
0	Monterey Park (approximately 400 m west).	0	Migration in contaminated runoff. Direct contact with site flora and fauna.
0	Botany Bay (approximately 300 m east)	0	
0	Existing site flora and fauna.		

Table 7: Summary of receptors and potential pathways.

4.3 Preliminary site investigation conclusions

Results of the site history review indicate that the site may have used as a recreational bowling club since some time before 1961. Historical information did not indicate any other site use. The following potential contamination sources are noted:

- Existing bowling club may have the potential to have introduced contaminants in the form of asbestos (as a construction material), pesticides (pest control), hydrocarbon (fuels and oils) and heavy metals (paints, pest control).
- Fill used across the site for levelling purposes and to fill the former pond is of unknown origin and quantity and may contain contaminants.

Overall, the investigation area is considered to have a medium risk of contamination and poses a potential risk of harm to human health and environment under proposed development conditions. As a result, assessment of the identified AECs was undertaken and a summary of results is outlined in the following sections.

5 Site Sampling Overview

5.1 Objectives

The sampling plan's development was guided by NSW EPA (1995) Sampling Design Guidelines and a risk based assessment. Assessment addressed each of the identified AEC and associated COPCs identified in Table 6. Results of the site testing were assessed against site acceptance criteria (SAC) developed with reference to ASC NEPM (1999, amended 2013).

The objective of site sampling is to assess the COPC (Section 4.1) and determine suitability for the proposed subdivision.

The soil sampling and borehole location map is shown in Attachment D. Borehole logs are provided in Attachment E.

5.2 Reference Guidelines

This assessment is prepared in general accordance with the following guidelines:

- ASC NEPC (1999, amended 2013) National Environmental Protection Measure, (NEPM 1999, amended 2013).
- NSW EPA (2017) 3rd Ed. Contaminated Land Management: Guidelines for the NSW Site Auditor Scheme.
- NSW EPA (1995) Sampling Design Guidelines.
- NSW OEH (2011) Contaminated Sites: Guidelines for Consultants Reporting on Contaminated Sites.

6 Sampling, Analytical and Quality Plan (SAQP)

A SAQP has been developed to ensure that data collected for the soil sampling regime is representative and provides a robust basis for site assessment decisions. Preparation of the SAQP has been completed in general accordance with ASC NEPM (1999, amended 2013) methodology and includes:

- Data quality objectives.
- Sampling methodologies and procedures.
- Field screening methods.
- Sample handling, preservation and storage procedures.
- Analytical QA/QC.

6.1 Data Quality Objectives (DQO)

Data quality objectives (DQO) have been prepared as statements specifying qualitative and quantitative data required to support project decisions. DQO have been prepared in general accordance with NSW EPA (2017) and US EPA (2006) guidelines and are presented in Table 8.

|--|

Step 1 Stating the Problem	The proposed development will include residential land use with access to soil. Therefore the site must be deemed suitable to accommodate the proposed land use. This assessment is required to assess risk posed by AECs and COPC to onsite and offsite sensitive receptors.	
Step 2 Identifying the Decision(s)	 Historical investigations have identified AECs which may be the source of contamination including buildings, bowling greens and fill present at the site. To assess the suitability of the site for future residential use, decisions are to be made based on the following questions: Is site soil quality suitable for the intended land use? Has previous or current site use impacted the quality of site soils posing a human health risk during intended future land use including construction phase? Do site soils require remediation or management to prior to onsite residential land use? 	
Step 3 Identification of Inputs to the Decision	 The inputs to the assessment of site soil quality will include: Soil sampling at nominated locations (where access is available) across the site. Laboratory analytical results for relevant COPC. Assessment of analytical results against site suitable human health and ecological risk criteria. 	

Step 4 Study Boundary Definitions	 Study boundaries are as follows: Lateral – Lateral boundary of the assessment is defined by the site boundary as indicated in Attachment A. Vertical – Vertical boundary will be governed by the maximum depth reached during subsurface investigations. Temporal – At this stage of investigation, only one round of sampling has been undertaken. 	
Step 5 Development of Decision Rules	The decision rule for this investigation are as follows: If the concentration of contaminants in the soil data exceeds the adopted assessment criteria; an assessment of the need to further investigate, remediate and / or manage the onsite impacts in relation to the proposed development will be undertaken.	
Step 6 Specification of Limits on Decision Errors	Guidance found in ASC NEPM (1999 amended 2013) Schedule B2 regarding 95% upper confidence limit (UCL) states that the 95% UCL of the arithmetic mean provides a 95% confidence level that the true population mean will be less than or equal to this value. Therefore a decision can be made based on a probability that 95% of the data collected will satisfy the site acceptance criteria. A limit on decision error will be 5% that a conclusive statement may be incorrect.	
Step 7 Optimisation of Sampling Design	Proposed sampling locations shall provide even coverage across identified AECs on the site. Sampling shall attempt to ensure that critical locations are assessed, sampled, and analysed for appropriate contaminants of concern. Soil sampling locations were set using a combined judgemental and grid pattern across the site.	

6.2 Data Quality Indicators (DQI)

In accordance with NSW DEC (2006), the investigation data set has been compared with Data Quality Indicators (DQI) outlined in Table 9 to ensure that collected data meets the project needs and that DQOs have been meet.

Table 9: [Data Quality	Indicators.
------------	--------------	-------------

Assessment Measure (DQI)	Comment
Precision – A measure of the variability (or reproducibility) of data.	Precision is assessed by reviewing blind field duplicated sample set through the calculation of relative percent difference (RPD). Data precision is deemed acceptable where results are 10 x the EQL, and where RPDs are less than 50% (10-30 x EQL) or 30% (>30 x EQL). Exceedance of this range is still considered acceptable where heterogeneous materials are sampled.
Accuracy – A measure of the closeness of reported data to the "true value".	 Data accuracy is assessed by: Method blanks. Field spikes and blanks. Laboratory control samples. Matrix spikes.

Assessment Measure (DQI)	Comment
Representativeness – The confidence that data are	To ensure data representativeness the following field and laboratory procedures are followed:
representative of each media present on the site.	 Ensure that the design and implementation of the sampling program has been completed in accordance with MA standard operating procedures (SOP).
	 Blank samples shall be used during field sampling to ensure no cross contamination or laboratory artefacts.
	 Ensure that all laboratory hold times are meet and that sample handling and transport is completed in accordance with MA SOP.
Completeness – A measure of the amount of usable data from a data collection	To ensure data set completeness, the following is required:
	 Confirmation that all sampling methodology was completed in general accordance with MA SOP.
activity.	 COC and receipt forms.
	 Results from all Laboratory QA/QC samples (Lab blanks, matrix spikes, lab duplicates).
	 NATA accreditation stamp on all laboratory reports.
Comparability - The	Data comparability is maintained by ensuring that:
confidence that data may be considered to be equivalent for each sampling	 All site sampling events are undertaken following methodologies outlined in MA SOP and published guidelines.
and analytical event.	 NATA accredited laboratory methodologies shall be followed on all laboratory testing.

6.3 Investigation and Sampling Methodology and Quality Assurance / Quality Control

Site investigation and soil sampling methodology (Table 10) was completed to meet the project DQOs.

Table 10: Investigation	and sampling methodology.
-------------------------	---------------------------

Activity	Detail / Comments	
Fieldworks	Contamination investigations were completed on 14 February 2018, and involved:	
	 Excavation of 10 boreholes using a 4WD ute-mounted hydraulic rig (in carpark and driveway) and hand-operated push tube (bowling greens and grassed area). 	
	 Collection of soil samples from the auger or push tube for laboratory testing and future reference. 	
	 Collection of surface soil samples by hand for laboratory testing and future reference. 	
	Testing and sample locations are provided in Attachment D.	
Soil and sediment sampling	Soil sampling was completed by the supervising MA environmental engineer using a new nitrile glove covered hand. All equipment was decontaminated between sampling locations where required.	
	Each sample was placed into a laboratory-supplied, acid-rinsed 250mL glass jar, labelled with a unique identification number and no headspace	

Activity	Detail / Comments
	to limit volatile loss. A clean pair of gloves was used for each sample.
QA / QC sampling	Duplicate samples were collected for intra-laboratory analysis at a rate of approximately 1 per 10 primary samples. 2 soil duplicate samples were collected during investigations. A trip blank and trip spike sample was used during sampling.
Sample handling and transportation	Sample collection, storage and transport were conducted according to MA SOP. Collected samples were placed immediately into an ice chilled cooler- box. Samples were dispatched to NATA-accredited laboratories under chain of custody documentation within holding times.

A review of QA/QC procedure has been completed and is presented in the data validation report (Attachment F). The report concludes that data is suitable for the purposes of the assessment.

6.4 Laboratory Analytical Suite

Laboratory analysis was carried out by Envirolab Pty Ltd a NATA accredited laboratory. Laboratory analytical documentation is presented in Attachment G.

Site AEC areas were tested for the COPC in Table 11.

 Table 11: Summary of primary soil laboratory analyses.

Number of Primary Samples Analysed
11
11
11
11
11
3
3

Notes:

¹Heavy metals – arsenic, cadmium, chromium, copper, lead, mercury, nickel, zinc.

² pH and CEC are not COPCs but were assessed to allow for calculation of site specific EILs.

7 Site Assessment Criteria

7.1 Overview

The site assessment criteria (SAC) adopted for this assessment have been derived from the following source:

• ASC NEPM (1999, amended 2013) National Environmental Protection (Assessment of Site Contamination) Measure (NEPM).

Guideline values for individual contaminants analysed for this assessment are presented in laboratory tables in Attachment H.

Table 12 summarises the applicability of the SAC adopted for this investigation.

Media Adopted Guidelines	Applicability
Soil ASC NEPM (19 amended 201	 P9, <u>Health Investigation Levels (HILs)</u> 3) HIL A – residential land use with access to soil. <u>Ecological Investigation Levels (EIL)</u> Site EILs have been calculated using methodology outlined in ASC NEPM (1999, amended 2013). Conservative values for soil physiochemical properties (pH and CEC) have been used in EIL acleutations. Ambient baselymers and in EIL acleutations.
	CEC) have been used in EIL calculations. Ambient background concentrations (ABC) have been taken from Olszowy et al. (1995) for aged contamination in low traffic areas in NSW.
	Environmental Screening Levels (ESLs)
	Urban residential and public open spaces.
	Health Screening Levels (HSLs)
	HSL A – Low density residential land use for sand (ASC NEPM 1999, amended 2013) have been adopted as a conservative measure.
	Management Limits
	TRH management levels have been adopted based on the proposed future land use.

Table 12: Summary of SAC.

Notes:

¹ See Section 7.2 for discussion on adopted ElLs.

7.2 Adopted EILs

3 soil samples were analysed for physiochemical properties (pH and CEC) as part of the laboratory analytical suite. Site specific EILs for heavy metals calculated for the site were found to be above the ambient background concentrations observed within natural soil samples sent for laboratory analysis. As a majority of the site was observed to contain fill material between depths of 0.3 - 1.9 mBGL and no natural topsoil was observed onsite, calculated site specific EILs for subsoil are considered overly conservative as SAC.

Adopted EILs for the site are calculated based on conservative physiochemical properties (pH of 4.0 and CEC of 5 cmol_c/kg) adopted from NEPM (1999, amended 2013) Table 1B(1).

8 Laboratory Analytical Results

Table 13 summarises the results of soil laboratory analysis. Detailed tabulated results showing individual sample concentrations compared to adopted SACs are shown in Attachment H. Laboratory analytical documentation is available in Attachment G.

Analyte	Results Compared to SAC
Heavy Metals	HILs Lead exceeded the adopted HIL (300 mg/kg) at 6332/BH101/1.5 (1,700 mg/kg). EIL Lead exceeded the adopted EIL (1,100 mg/kg) at 6332/BH101/1.5 (1,700 mg/kg). Copper exceeded the adopted EIL (55 mg/kg) at 6332/BH101/1.5 (860 mg/kg) and 6332/BH103/0.2 (57 mg/kg). Nickel exceeded the adopted EIL (35 mg/kg) at 6332/BH106/0 4
	(46 mg/kg). Zinc exceeded adopted EIL (350 mg/kg) at 6332/BH101/1.5 (1,200 mg/kg).
TPH/BTEXN	HILs All results below SAC. ELL All results below SAC. ESL All results below SAC. HSL All results below SAC. Management Limits All results below SAC.
OCP/OPP	HILs All results below SAC. EIL All results below SAC.

Table 13: Summary of soil laboratory results.

Analyte	Results Compared to SAC
TRH	HILS
	All results below SAC.
	EL
	All results below SAC.
	ESL
	All results below SAC.
	HSL
	All results below SAC.
	Management Limits
	All results below SAC.
РАН	HILS
	Carcinogenic PAHs exceeded the adopted HIL (3 mg/kg) at
	6332/BH101/1.5 (4.05 mg/kg).
	EL
	All results below SAC.
	ESL
	Benzo(a)pyrene exceeded the adopted ESL (0.7 mg/kg) at 6332/BH101/1.5 (3.1 mg/kg).
	HSL
	All results below SAC.

9 Discussions

9.1 Samples Exceeding SAC

Soil sample 6332/BH101/1.5 (with SAC exceedances for heavy metals and PAH) was located within fill material underlying the existing carpark. Elevated contaminant concentrations are likely a result of anthropogenic material within the uncontrolled fill. Based on site testing, contamination was observed to be limited to this fill layer underlying the carpark. Soil sample 6332/BH101/2.0, located within natural soils beneath the contaminated layer was found to be below all adopted SAC.

Minor EL exceedances at 6332/BH103/0.2 and 6332/BH106/0.4 are likely a result of anthropogenic material within fill. These SAC exceedances are addressed via a 95% upper confidence limit (UCL) analysis (Section 9.2).

No other exceedances of SAC were observed within fill material underlying the existing bowling greens or grassed area to the west of the bowling club.

9.2 95% UCL Analysis

To assess minor EL exceedances of nickel and copper within fill material at the site, a 95% UCL analysis has been undertaken for samples taken from the site. Sample 6332/BH101/1.5 has not been included in UCL calculations as contaminant concentrations exceed 250% of the adopted EL for nickel. UCL calculations are provided in Attachment I and are summarised below.

 Table 14: Summary of UCL analysis.

COPC	Maximum Value (mg/kg)	EIL (mg/kg)	95% UCL (mg/kg)
Nickel	46	35	27.4
Copper	57	55	37.6

95% UCL for nickel and copper provide concentrations below the adopted EIL for the site. As a result, these exceedances are not considered a significant risk and do not require further remediation or management.

9.3 Data Gaps

It is noted that, due to access restrictions, soils underlying the existing bowling club at the site (AEC A) have not been tested. It is recommended that additional assessment and sampling of this AEC is undertaken following demolition of the existing structures. This can be completed during the remediation stage.

9.4 Acid Sulphate Soils (ASS)

The NSW Environment and Heritage eSPADE website identifies the site as Class 4 acid sulphate soil (ASS) risk. Boreholes undertaken as part of a geotechnical investigations (Douglas Partners, 2016) observed fill to a maximum depth of 1.2 mBGL and groundwater entering between 2.5 and 3.0 mBGL.

If the proposed development is to be constructed on-grade, it is unlikely that ASS soils are to be encountered during construction or excavation of fill material (if required). However, if any excavation beyond 2.0 mBGL (i.e. for a basement) or lowering of the water table is proposed as part of the development, ASS soils may pose a potential risk and are to be considered.

10 Conclusion and Discussions

SAC exceedances for heavy metals (lead, copper and zinc) and PAHs (benzo(a)pyrene and carcinogenic PAHs) were observed within fill material at one sampling location (6332/BH101/1.5), which may pose a potential risk to future human and environmental receptors at the site. It is recommended that a remedial action plan (RAP) be prepared for the site to address SAC exceedances within fill underlying the existing carpark at the site.

It is recommended that, following demolition of existing site structures, additional soil testing be conducted to address identified investigation constraints (Section 9.3) and data gaps within the CSM. Furthermore, analysis of all data (including new data from dwelling footprint) is to be undertaken using 95 % UCL confirmation limit to assess significance of ESL and EIL exceedances.

We consider that the site can be made suitable for proposed residential development provided that a RAP is developed and implemented accordingly. A likely remediation strategy may involve the removal and offsite disposal of identified contaminated soil considered to pose an unacceptable site risk. The RAP is to outline waste management requirements in light of any additional investigations or unexpected finds.

Following remediation works, a validation report is required to be prepared to confirm site suitability for the proposed development.

Prior to any soil being removed from site, a formal waste classification assessment in accordance with NSW EPA Waste Classification Guidelines (2014) is required.

11 Limitations Statement

This contamination assessment was undertaken in line with current industry standards.

It is important, however, to note that no land contamination study can be considered to be a complete and exhaustive characterisation of a site nor can it be guaranteed that any assessment shall identify and characterise all areas of potential contamination or all past potentially contaminating land-uses. This is particularly the case on sites where additional assessment work and remediation is identified as being required. Therefore, this report should not be read as a guarantee that no further contamination shall be found on the site. Should material be exposed in future which appears to be contaminated or inconsistent with natural site soils, additional testing may be required to determine the implications for the site.

Martens & Associates Pty Ltd has undertaken this assessment for the purposes of the current development proposal. No reliance on this report should be made for any other investigation or proposal. Martens & Associates accepts no responsibility, and provides no guarantee regarding the characteristics of areas of the site not specifically studied in this investigation.

References

Bayside Council – DA/BA/CC records (2018).

Herbert C. (1983) Sydney 1:100,000 Geological Sheet 9130, 1st edition, Geological Survey of New South Wales, Sydney.

Nearmap – Aerial photographs (2009, 2018).

- NEPC (1999, amended 2013) National Environmental Protection (Assessment of Site Contamination) Measure – Referred to as ASC NEPM (1999, amended 2013).
- NSW EPA (2017) 3rd Ed. Contaminated Land Management: Guidelines for the NSW Site Auditor Scheme.
- NSW Department of Environment & Heritage (eSPADE, NSW soil and land information). http://www.environment.nsw.gov.au
- NSW DPI Water, groundwater database, accessed February 9, 2018. http://allwaterdata.water.nsw.gov.au/water.stm
- NSW EPA (1995) Sampling Design Guidelines.
- NSW Land and Property Information (LPI) Aerial photographs (1961, 1975, 1991).
- NSW OEH (2011) Contaminated Sites: Guidelines for Consultants Reporting on Contaminated Sites, 2nd Edition.
- NSW SIX Spatial Information Exchange Land & Property Information Aerial photograph (2017). https://six.nsw.gov.au/wps/portal/

SEPP 55 Remediation of Land.

12 Attachment A – Historic Aerial Photographs and Site Location

This drawing must not be reproduced in whole or part without prior written consent of Martens & Associates Pty Ltd. (C) Copyright Martens & Associates Pty Ltd

119 BARTON STREET, MONTEREY, NSW

The		- Intility		8	
			1.		
15.00 +	1 Part		A.		T
1. 24		6 total			
14	1		203		
123	2.5	Con	0		
113	BL	1 Bat	-		
	and he				
EE	TP SAT				
FR					
A	五万	19	-22		
her	200	1 pr	3		
Con the	-	ter a			
			FT/		
104	a fil	of the	H		
		10	Pap		
		N N	- 4	1.38	
	ATTA		15P		
	MARIE	ALL:	199		
	14120		2 M	2	
Ph	at the				
	-			1	
	-	9.3			
-	1.15		HS-	4 (3)	
		The second	131		
A.	100	alay 200	1		
32	1.000	The second			
	1000		The second		
		-			
gineers	DRAWING TITLE	HISTOR	ICAL AERIAI	. 1943	
			SOURCE: LPI		
av. (00) 0470 0707	PROJECT NO.	PLANSET NO.	RELEASE NO.		
ax. (UZ) 94/0 8/67	P1706332 DRAWING ID: P1706332-PS01-R02	PS01	R02		B

ent		S	DURCE: LPI		
nical					
	PROJECT NO.	PLANSET NO.	RELEASE NO.	DRAWING NO.	REVISION
9999 Fax: (02) 9476 8767 com.au	P1706332	PS01	R02	PS01-AZ02	В
	DRAWING ID: P1706332-PS01-R02-AZ	02 000000	20 30 4	0 50 60 70	80 90 100

BARTON STREET

JF
DISCLAIMER & COPYRIGHT
This plan must not be used for construction unless signed as approved by
principal certifying authority.
All measurements in millimetres unless otherwise specified.
This drawing must not be reproduced in whole or part without prior written
consent of Martens & Associates Pty Ltd.
(C) Copyright Martens & Associates Pty Ltd

PROJECT MANAGER | CLIENT

DATUM

GRID

MONTEREY EQUITY PTY LTD.

PROJECT NAME/PLANSET TITLE DETAILED SITE INVESTIGATION CONTAMINATION ASSESSMENT 119 BARTON STREET, MONTEREY, NSW

Suite 201, 20 George St, Hornsby, NSW 2077 Australia Phone: (02) 9476 999 Email: mail@martens.com.au Internet: www.martens.com

				8	A A A A A A A A A A A A A A A A A A A
	E				
					E
g Engineers ent ical	DRAWING TITLE	HISTOR S	ICAL AERIAL OURCE: LPI RELEASE NO.	1975 DRAWING NO.	F

A1/	A3 L	ANDSCAPE	(A1LC	v02.0.(

BARTON STREET

JF DISCLAIMER & COPYRIGHT This plan must not be used for construction unless signed as approved by principal certifying authority. All measurements in millimetres unless otherwise specified. This drawing must not be reproduced in whole or part without prior written consent of Martens & Associates Pty Ltd. (C) Copyright Martens & Associates Pty Ltd

DATUM PROJECT MANAGER CLIENT

MONTEREY EQUITY PTY LTD.

Environment Water Geotechnical Civil

Suite 201, 20 George St, Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 Email: mail@martens.com.au Internet: www.martens.com.au

DRAWING ID: P1706332-PS01-R02-AZ04

DATE DRAWN DESIGNED CHECKED APPRVD SCALE REV DESCRIPTION 0<u>5 10 15 20 25 30 35 40 45</u> A1 (A3) 1:500 (1:1,000) B CHECK AND APPROVED 13/3/2018 KW RM GT GT A INITIAL RELEASE 07/03/2018 KW RM A1 / A3 LANDSCAPE {A1LC_v02.0.01}

	GRID	DATUM	PROJECT MANAGER			
50 METRES			JF			
	DISCLAIMER 8	& COPYRIGHT				
	This plan must not be used for construction unless signed as approved by principal certifying authority.					
	All measurements i	n millimetres unless ot	herwise specified.			
	This drawing must consent of Martens	not be reproduced in w & Associates Pty Ltd.	hole or part without prior written			
	(C) Copyright N	lartens & Associat	tes Pty Ltd			

MONTEREY EQUITY PTY LTD.

PROJECT NAME/PLANSET TITLE DETAILED SITE INVESTIGATION CONTAMINATION ASSESSMENT 119 BARTON STREET, MONTEREY, NSW

Suite 201, 20 George St, Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fa Email: mail@martens.com.au Internet: www.martens.com.au

7	1			8		_
						A
						B
						c
						D
	current: clear: chan	gel				E
g Engineers ent ical	DRAWING TITLE	HISTOR SOU	ICAL AERIAL RCE: NEARM	2009 4P		. F
9999 Fax: (02) 9476 8767 om.au	PROJECT NO. P1706332	PLANSET NO. PS01	RELEASE NO.	DRAWING NO. PS01-AZ05	REVISION	

DRAWING ID: P1706332-PS01-R02-AZ05

A1 / A3 LANDSCAPE {A1LC_v02.0.01}

	GRID	DATUM	PROJECT MANAGER			
50 METRES			JF			
	DISCLAIMER 8	COPYRIGHT				
	This plan must not be used for construction unless signed as approved by principal certifying authority.					
	All measurements i	n millimetres unless ot	herwise specified.			
	This drawing must consent of Martens	not be reproduced in w & Associates Pty Ltd.	whole or part without prior written			
	(C) Copyright N	lartens & Associat	tes Pty Ltd			

DETAILED SITE INVESTIGATION CONTAMINATION ASSESSMENT 119 BARTON STREET, MONTEREY, NSW

Suite 201, 20 George St, Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Email: mail@martens.com.au Internet: www.martens.com.a

	PROJECT NO.	PLANSET NO.	RELEASE NO.	DRAWING NO.	REVISION
99 Fax: (02) 9476 8767 n.au	P1706332	PS01	R02	PS01-AZ06	В
	DRAWING ID: P1706332-PS01-R02-AZ	06 0 10	20 30 4	0 50 60 70	80 90
13 Attachment B – Bayside Council Correspondence

Robert Mehaffey

From: Sent: To: Subject: Andrew Mesthos Wednesday, 7 February 2018 4:05 PM Robert Mehaffey FW: 119 Barton Street Monterey

From: Leanne McKinnon [mailto:Leanne.McKinnon@bayside.nsw.gov.au]
Sent: Wednesday, 7 February 2018 3:41 PM
To: Andrew Mesthos amesthos@martens.com.au
Subject: 119 Barton Street Monterey

Dear Andrew

In response to your recent request regarding 119 Barton Street Monterey. I advise these are the relevant files:

DA-2008/195	Carry out minor alterations and additions to change room, handicap entry ramp and upgrade kitchen and bar.
BA-1995/696	Outbuilding shed Class 10
BA-1996/134	Club additions to club Class 6
BA-1995/736	Building Application villas & townhouses 13 units class 2

Regards

Leanne McKinnon Information Officer 444-446 Princes Highway, Rockdale NSW 2216 T 02 9562 1682 E leanne.mckinnon@bayside.nsw.gov.au W www.bayside.nsw.gov.au

This email is intended solely for the addressee and may contain confidential information. Any disclosure, copying or distribution to others is not permitted without agreement of the sender. Council does not represent, warrant or guarantee this email is free of errors, virus or interference. Any views expressed or commitments made in this email are those of the individual sender, and may not necessarily be those of Council. With regard to any personal information that may be included in this email, Council complies with the Privacy and Personal Information Protection Act, and expects the recipient to do likewise. This email may be made available to the public under various legislation.

14 Attachment C – AEC Map

15 Attachment D – Sampling Plan

			-	8		
		in the second se				A
		K	T		- A	_
					B	}
		E A				_
						\rightarrow
)
			K			_
		公里			E	-
						_
Engineers ent cal	DRAWING TITLE	SAN	APLING PLAN RCE: NEARMA	N AP	A	:
999 Fax: (02) 9476 8767 m.au	PROJECT NO. P1706332 DRAWING ID: P1706332-PS01-R02-JZ0	PLANSET NO. PS01	RELEASE NO. R02	DRAWING NO. PS01-JZ00	REVISION B	

16 Attachment E – Borehole Logs

CL	IENT	r	Monterey	/ Equity	/ Pty Ltd				COMMENCED	14/02/2018	COMPLETED	14/02/20	18	REF BH101	
PR	OJEC	т	Contamii	nation A	Assessment				LOGGED	RM	CHECKED				
SIT	Ē	1	119 Barte	on St, N	Monterey, NSW				GEOLOGY	Hawkesbury Sandstone	VEGETATION	N/A		PROJECT NO. P1706332	
EQ	UIPME	NT			4WD ute-mounted hydra	ulic c	Iril rig		EASTING		RL SURFACE	4.1 m		DATUM AHD	
EXC	CAVAT	ION	DIMENSI	ONS	Ø100 mm x 2.50 m depth	1			NORTHING		ASPECT	-		SLOPE <2%	
		Dri	lling		Sampling	-		7		Fi	ield Material D	escriptio	n		
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATIO	SOIL/RC	OCK MATERIAL DESC	CRIPTION	MOISTURE CONDITION	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
			-	<u>0.10</u> 4.00	6332/BH101/0.15/DUP/ D 0.15 m	┢		SP	ASPHALT. FILL: Gravelly SANI concrete.	D, dark brown, medium gr	rained, with trace				
			-	<u>0.50</u> 3.60	6332/BH101/0.15/S/1 D 0.15 m			*	Trace slag.				L		
	м	ered	- 1		6332/BH101/0.7/S/1 D 0.70 m			*							
AD/T		t Encount	-	1.15 2.95 1.30	6332/BH101/1.2/S/1 D 1.20 m			CI	FILL: CLAY, mediur	n plasticity, light brown.		— – — – M	s	_	
		No	-	2.00	6332/BH101/1.5/S/1 D 1.50 m			SP SP	FILL: SAND, brown,	meaium grained, with tra	ice drick.				
	L 2 - 2.0 2.0 m SP SAND, white, medium grained. MD RESIDUAL SOIL														
1-13	L 2 - 2.20 2.00 m 6332/BH101/2.0/S/1 D SP SAND, white, medium grained. 2.50 2.50 Hole Terminated at 2.50 m 2.50: Investigation limited.														
00 2016-1	2 6332/BH101/2.0/S/1 D														
Martens 2	2 6332/BH101/2.0/S/1 D 3 6445, mile, moduling and 0. 1 2.50 2.50 1														
-11-13 Prj:			-												
2.00 2016			3—												
. Martens			-												
DGD Lit			-												
Situ Tool -			-												
ab and In			-												
Datgel L			4												
7 8.30.00			_												
2018 12:3			_												
>> 07/03			-												
rawingFilk			_												
GPJ < <d< td=""><td></td><td></td><td>5_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></d<>			5_												
3H110V01.															
2BH101-5															
P170633															
REHOLE															
RTENS BC			-												
Log MAF				 	EXCAVATION LOG TO) D BI	E REA	D IN (CONJUCTION WI	THACCOMPANYING	REPORT NOT	ES AND	ABB	I REVIATIONS	
ARTENS 2.00 LIB.GLB	(0) Соруг	art right Martens	en & Associate	S s Pty. Ltd.			Sui mail	MARTENS & J te 201, 20 George S Phone: (02) 9476 @martens.com.au	ASSOCIATES PTY LTD St. Hornsby, NSW 2077 9999 Fax: (02) 9476 8 WEB: http://www.marter) Australia 767 ns.com.au		En	gineering Log - BOREHOLE	

CL	IENT		Montere	y Equity	/ Pty Ltd				COMMENCED	14/02/2018	COMPLETED	14/02/2	018		REF	BH102
PF	ROJE	ст	Contami	nation A	Assessment				LOGGED	RM	CHECKED					1 of 1
Sľ	TE		119 Bart	ton St, M	Monterey, NSW				GEOLOGY	Hawkesbury Sandstone	VEGETATION	N/A			Sneet PROJECT	1 OF 1 NO. P1706332
EG	QUIPM	ENT			4WD ute-mounted hydrau	ulic c	dril rig		EASTING		RL SURFACE	3.7 m			DATUM	AHD
EX	CAVA	TION	DIMENSI	ONS	Ø100 mm x 2.00 m depth	1			NORTHING		ASPECT	-			SLOPE	<2%
	-	Dr	illing		Sampling			z		Fi	eld Material D	escripti	on			
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATIOI	SOIL/RC	OCK MATERIAL DESC	RIPTION	MOISTURE			STRU AD OBSE	CTURE AND DITIONAL ERVATIONS
	м		-	0.10 3.60	6332/BH102/0.2/S/1 D 0.20 m		\bigotimes	SP	ASPHALT. FILL: Gravelly SANI concrete.	D, dark brown, medium gr	ained, with trace			FILL	= — — ·	
		q	-	3.30	6332/BH102/0.5/S/1 D 0.50 m		X	SP	FILL: SAND, grey, fi	ne to medium grained.			L			-
AD/T	L	Not Encountere	- 1	0.80 2.90	6332/BH102/0.9/S/1 D 0.90 m			SP	SAND, yellow/white,			— -		RESIDU	AL SOIL	
			-	-	6332/BH102/1 8/S/1 D								MD			-
	2 6332/BH102/1.8/S/1 D 0															
	2 2.00 1.00 1.00 - - - - - - - - - - - -															
11-13	Hole Terminated at 2.00 m 2.00: Investigation limited.															
00 2016-'																
artens 2.																
-13 Prj: N																
2016-11			3-	-												-
tens 2.00			-	-												-
Lib: Mar																
ol - DGD			-													-
n Situ Toc			-													-
ab and			-	-												-
Datgel			4	-												-
8.30.00			-	-												-
018 12:37			_	_												_
07/03/2																
/ingFile>>			-													-
< < Draw			-	-												-
0V01.GP,			5-	-												-
01-BH11			-	-												-
6332BH1			-	-												-
LE P170			-													-
BOREHC																
ARTENS																-
B Log M.	1	1			EXCAVATION LOG TO) BI	E REA	D IN (CONJUCTION WI	TH ACCOMPANYING	REPORT NOT	ES ANI) ABB	BREVIATI	ONS	
MARTENS 2.00 LIB.GLI		C) Copy	art right Martens	en & Associate	S is Pty. Ltd.			Su mail	MARTENS & A ite 201, 20 George S Phone: (02) 9476 @martens.com.au	ASSOCIATES PTY LTD St. Hornsby, NSW 2077 9999 Fax: (02) 9476 8 WEB: http://www.marter	Australia 767 ns.com.au		En	gine BOI	erin REH	g Log - OLE

CL	IENT	1	Montere	/ Equity	Pty Ltd				COMMENCED	14/02/2018	COMPLETED	14/02/20	18		REF	BH103
PR	OJEC	т	Contami	nation A	Assessment				LOGGED	RM	CHECKED					
SIT	E		119 Bart	on St, N	Monterey, NSW				GEOLOGY	Hawkesbury Sandstone	VEGETATION	N/A			Sheet PROJECT	1 OF 1 NO. P1706332
EQ	UIPME	NT			4WD ute-mounted hydrau	ulic d	ril rig		EASTING		RL SURFACE	3.7 m		1	DATUM	AHD
EXC	CAVAT	ION	DIMENSI	ONS	Ø100 mm x 2.50 m depth				NORTHING		ASPECT	-		:	SLOPE	<2%
		Dri	lling		Sampling	1		-		Fi	ield Material D	escriptio	n	1		
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RC	CK MATERIAL DESC	CRIPTION	MOISTURE CONDITION	CONSISTENCY DENSITY	DAV/EME	STRU ADI OBSE	CTURE AND DITIONAL ERVATIONS
	м		-	<u>0.10</u> 3.60	6332/BH103/0.2/S/1 D 0.20 m		\bigotimes	SP I	ASPHALT FILL: Gravelly SANI concrete.	 D, dark brown, medium gr	rained, with trace		– – L	FILL	:N I — — — -	
			-	<u>0.40</u> 3.30	6332/BH103/0.5/S/1 D 0.50 m		\sim	SP :	SAND, grey, fine to	 medium grained.				RESIDU	AL SOIL	
AD/T	L	Not Encountered	1	<u>1.00</u> 2.70	6332/BH103/1.1/S/1 D 1.10 m			SP \$	SAND, grey/white, r	nedium grained.		— –	MD			-
6-11-13	2															
s 2.00 201	2.50 Hole Terminated at 2.50 m 2.50: Investigation limited.															
6-11-13 Prj: Marten	2														-	
iitu Tool - DGD Lib: Martens 2.00 201			3													-
latgel Lab and In S			4													-
2:37 8.30.004 D			-													-
< <drawingfile>> 07/03/2018 1</drawingfile>			-													-
EHOLE P1706332BH101-BH110V01.GFJ			5 —													-
ENS BOR																-
29 MART) RI	= REA							 RE\/IATI(ONS	
MARTENS 2.00 LIB.GLB Li	n (c) Copy	art right Martens	e n & Associate	S s Pty. Ltd	_		Suite mail@	MARTENS & 201, 20 George S Phone: (02) 9476 martens.com.au	ASSOCIATES PTY LTD it. Hornsby, NSW 2077 9999 Fax: (02) 9476 8 WEB: http://www.marter	Australia 767 ns.com.au		En	gine BOł	erin REH	g Log - OLE

CL	IENT	1	Montere	y Equity	Pty Ltd				COMMENCED	14/02/2018	COMPLETED	14/0	2/20	18	REF BH104
PR	OJEC	т	Contami	nation A	Assessment				LOGGED	RM	CHECKED				
SIT	E		119 Bart	on St, N	Monterey, NSW				GEOLOGY	Hawkesbury Sandstone	VEGETATION	N/A			PROJECT NO. P1706332
EQ	JIPME	INT			4WD ute-mounted hydrau	ulic c	dril rig		EASTING		RL SURFACE	3.8 r	n		DATUM AHD
EXC	CAVAT	ION	DIMENSI	ONS	Ø100 mm x 5.50 m depth				NORTHING		ASPECT	-			SLOPE <2%
	1	Dri	lling		Sampling	1				Fi	ield Material D	escri	iptio	n	
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RC	OCK MATERIAL DESC	CRIPTION		CONDITION	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
	м		-	3.75	6332/BH104/0.2/S/1 D 0.20 m		\bigotimes	SP	ASPHALT FILL: SAND, grey, v	vith trace gravels.				L	FILL
.GPJ < <drawingfile>> 07/03/2016 12:37 8:30.004 Detget Lab and InStu Tool-DGD [Lb: Martens 2.00 2016;11:13 Prij Martens 2.00 2016;11:13 AD/T</drawingfile>	M	13/120/ET			6332/BH104/0.2/S/1 D 0.20 m 6332/BH104/0.7/S/1 D 0.70 m			SP	SAND, grey, fine to	medium grained.			w	MD	RESIDUAL SOIL
REHOLE P1706332BH101-BH110V			-	5.50					Hole Terminated at	5.50 m					5.50: Investigation limited.
ENS BC			-												
									011110710		DEDOET		N.=		
MARTENS 2.00 LIB.GLB L09	r ") Copy	art right Martens	en & Associate	EXCAVATION LOG TO S 19 Pty. Ltd.) BI	E REA	D IN C Suit mail@	MARTENS & MARTENS & e 201, 20 George S Phone: (02) 9476 @martens.com.au	I H ACCOMPANYING ASSOCIATES PTY LTD 5t. Hornsby, NSW 2077 9999 Fax: (02) 9476 8 WEB: http://www.marter	REPORT NOT Australia 767 ns.com.au	IES A	ND	En	BREVIATIONS

С	LIEN	١T	N	lonterey	/ Equity	Pty Ltd				COMMENCED	14/02/2018	COMPLETED	14/02/20	18	F	REF	BH105
Р	ROJ	IEC.	тс	ontamir	nation A	Assessment				LOGGED	RM	CHECKED					
S	ITE		1	19 Barto	on St, N	Nonterey, NSW				GEOLOGY	Hawkesbury Sandstone	VEGETATION	N/A		P	neet ROJECT	1 OF 1 NO. P1706332
E	QUIP	MEN	NT			4WD ute-mounted hydrau	ulic c	Iril rig		EASTING		RL SURFACE	4.3 m		D	ATUM	AHD
E)	KCA\	/ATI	ON E	IMENSI	ONS	Ø100 mm x 2.50 m depth	1			NORTHING		ASPECT	-		s	LOPE	<2%
	_		Dril	ling		Sampling			7		Fi	ield Material D	escriptio	on I	1		
METHOD	PENETRATION	RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RO	OCK MATERIAL DESC	CRIPTION	MOISTURE	CONSISTENCY DENSITY		STRU(ADI OBSE	CTURE AND DITIONAL RVATIONS
				_	4.25 0.30	6332/BH105/0.15/S/1 D 0.15 m		\bigotimes	SP	ASPHALT FILL: Gravelly SANE	D, brown/grey, fine graine	d.				·	
				-	4.00	6332/BH105/0.4/S/1 D 0.40 m	-		SP	SAND, grey, fine gra	ained.				RESIDUAL	SOIL	
				-													-
				-													-
AD/				-	4 50								м	L			-
				-	2.80	-				Grading to yellow.							-
				-													-
11-13																	
\$ 2.00 2016-	2.50 -																
3 Prj: Marten		1 1															
0 2016-11-10				3—													
: Martens 2.0				-													-
1- DGD Lib				-													-
Id In Situ Too				-													-
Datgel Lab ar				4													_
7 8.30.004 1				-													-
03/2018 12:3				-													-
IgFile>> 07/				-													-
PJ < <drawi< td=""><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></drawi<>				-													-
H110V01.G				5 —													
5332BH101-E				-													-
HOLE P1700				-													-
TENS BORE				_													-
Log MA					I	L EXCAVATION LOG TO) D BI	l E REA	L I D IN C	ONJUCTION WI	TH ACCOMPANYING	REPORT NOT	ES AND	l ABB	i Reviatio	NS	
ARTENS 2.00 LIB.GLB	(n	Copyrig	art ght Martens	en & Associate	S s Pty. Ltd.			Suit mail@	MARTENS & A e 201, 20 George S Phone: (02) 9476 @martens.com.au	ASSOCIATES PTY LTD St. Hornsby, NSW 2077 9999 Fax: (02) 9476 8 WEB: http://www.marter) Australia 767 ns.com.au		En	gine BOR	erin REH	g Log - OLE

CI	IENT		Monterey	/ Equity	Pty Ltd				COMMENCED	14/02/2018	COMPLETED	14/02/20	18	REF BH106	
Pf	ROJE	ст	Contamii	nation A	ssessment				LOGGED	RM	CHECKED				
SI	TE		119 Bart	on St, N	lonterey, NSW				GEOLOGY	Hawkesbury Sandstone	VEGETATION	N/A		PROJECT NO. P1706332	
EC	QUIPME	ENT			Push Tube				EASTING		RL SURFACE	3.7 m		DATUM AHD	
ΕX	CAVA	TION	DIMENSI	SNC	1.50 m depth				NORTHING		ASPECT	-		SLOPE <2%	
		Dri	illing		Sampling					Fi	ield Material D	escriptio	on	1	
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RC	CK MATERIAL DESC	RIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
				0.15	6332/BH106/0.1/S/1 D		X		FILL: Clayey SAND, FILL: SAND, white,	grey/brown, coarse.		/_P_	MD	FILL	
			-	3.55 0.35	0.10 m 6332/BH106/0.25/S/1		\bigotimes	SP	FILL: Gravelly SAN	D, grey, coarse.		/			
			_	3.35	6332/BH106/0.4/S/1 D			SP	FILL: Gravelly SAN	D, dark grey/black, mediu	m grained.				
			_	0.55 3.15	0.40 11			SP	SAND, white/yellow	fine to medium grained.			<u>-</u>	RESIDUAL SOIL	
H	L				6332/BH106/0.65/S/1 D 0.65 m										
												M			
			1										MD		
			-												
	-	3/02/16		1.50		\vdash			Hole Terminated at	1.50 m				1.50: Investigation limited.	
			-												
6-11-13															
2:00 201															
vartens			-												
-13 Prj:			-												
12016-17			3												
tens 2.00			_												
LID: Mai															
1- DGD															
Situ Too			-												
ab and Ir			-												
Datgel L			4												
5.30.004															
8 12:37 (
17/03/201															
JHIE>> (-												
cDrawing			-												
- GPJ <			5												
H110V0															
BH101-E															
1706332			-												
HOLE P			-												
S BORE			-												
MARTEN															
- Bo - Bo					EXCAVATION LOG TO	B	REA	D IN C	ONJUCTION WI	TH ACCOMPANYING	REPORT NOT	TES AND	ABB	REVIATIONS	
IARI ENS 2.00 LIB.GL	ſ	C) Copy	art right Martens	en & Associate	S s Pty. Ltd.			Suit mail@	MARTENS & 2 e 201, 20 George S Phone: (02) 9476 martens.com.au	ASSOCIATES PTY LTD 5t. Hornsby, NSW 2077 9999 Fax: (02) 9476 8 WEB: http://www.marter) Australia 767 ns.com.au		En	gineering Log - BOREHOLE	

CL	IENT		Monterey	/ Equity	Pty Ltd				COMMENCED	14/02/2018	COMPLETED	14/02/20	18	REF BH107	
PR	OJEC	т	Contamii	nation A	Assessment				LOGGED	RM	CHECKED				
SIT	Ē		119 Bart	on St, N	fonterey, NSW				GEOLOGY	Hawkesbury Sandstone	VEGETATION	N/A		PROJECT NO. P1706332	
EQ	UIPME	NT			Push Tube				EASTING		RL SURFACE	3.7 m		DATUM AHD	
EX	CAVAT	ION	DIMENSI	ONS	1.50 m depth				NORTHING		ASPECT	-		SLOPE <2%	
		Dri	illing		Sampling			-		Fi	eld Material D	escriptio	on		
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RC	OCK MATERIAL DESC	RIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
			-	3.65 0.25	6332/BH107/0.1/S/1 D 0.10 m		X	∖ <u>SC</u> SP	FILL: Clayey SAND, FILL: SAND, white,	grey/brown, coarse.		/ D	MD	FILL	
		p	_	0.35 0.45	6332/BH107/0.3-0.4/S/1 D 0.30 m		\bigotimes	SP SP	FILL: Gravelly SANI FILL: Gravelly SANI	D, grey, coarse.			L		
РТ	L	Not Encountere	- - 1	3.25	6332/BH107/0.6/S/1 D 0.60 m			SP	SAND, white/yellow,	fine to medium grained.		M	MD	RESIDUAL SOIL	
			-												
\vdash			-	1.50					Hole Terminated at	1.50 m				1.50: Investigation limited.	
			-												
1-13															
2.00 2016-1															
⊱11-13 Prj: Martens															
ens 2.00 2016			3											-	
0GD Lib: Marl			-												
nd In Situ Tool - D			-												
Datgel Lab a			4											-	
13/2018 12:37 8.30.004			-												
< <drawingfile>> 07/.</drawingfile>			-												
0V01.GPJ <			5											-	
16332BH101-BH1			-												
EHOLE P170			-												
KRTENS BOR			-												
	I		1		EXCAVATION LOG TO) BE	EREA	.D IN C	ONJUCTION WI	TH ACCOMPANYING	REPORT NOT	ES AND	ABB	REVIATIONS	
MARTENS 2.00 LIB.GLB	(c) Сору	art right Martens	en & Associate	S s Pty. Ltd.			Suit mail@	MARTENS & A e 201, 20 George S Phone: (02) 9476 martens.com.au	ASSOCIATES PTY LTD St. Hornsby, NSW 2077 9999 Fax: (02) 9476 8 WEB: http://www.marter	Australia 767 ns.com.au		En	gineering Log - BOREHOLE	

CI	IENT	1	Montere	y Equity	Pty Ltd				COMMENCED	14/02/2018	COMPLETED	14/02/2	018	F	REF	BH108
PF	ROJE	ст	Contami	nation A	Assessment				LOGGED	RM	CHECKED					
SI	TE		119 Bart	on St, N	Nonterey, NSW				GEOLOGY	Hawkesbury Sandstone	VEGETATION	N/A		SI PI	heet ROJECT	1 OF 1 NO. P1706332
EC	UIPME	ENT			Push Tube				EASTING		RL SURFACE	3.7 m		D	ATUM	AHD
EX	CAVA	ΓION	DIMENSI	ONS	1.50 m depth				NORTHING		ASPECT	-		S	LOPE	<2%
		Dri	illing		Sampling	_		7		Fi	eld Material D	escript	on	1		
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RC	OCK MATERIAL DESC	RIPTION	MOISTURE	CONDITION CONSISTENCY DENSITY		STRUG ADI OBSE	CTURE AND DITIONAL RVATIONS
				3.60	6332/BH108/0.05/S/1 D 0.05 m		XX	<u>∖sc</u> ∫sp∦	FILL: Clayey SAND, FILL: SAND, white,	grey/brown, coarse.		<u>/</u> _!		/ FILL 		
				0.40	6332/BH108/0.3/S/1 D		\bigotimes	SP	FILL: Gravelly SAN	D, grey, coarse.			L			-
		ered	-	3.25	0.30 m		(X)		FILL: Gravelly SAN	D, dark grey/black, mediu	m grained.			RESIDUAL	SOIL	
		counte			6332/BH108/0.6/S/1 D			SP	SAND, white/yellow,	fine to medium grained.						-
F	L	t End			0.00 m							м				-
		ž	1										MD			_
			-													-
			-	1.50												-
			-						Hole Terminated at	1.50 m				1.50: Inves	tigation li	mited.
ę																
2016-11-																
ens 2.00																
Prj: Marte			_													-
6-11-13																
2.00 201			3-													-
Martens			-													-
GD LIB:																-
Tool - D			-													-
nd In Situ																
gel Lab a																-
004 Dat			4													
:38 8.30			-													-
//2018 12			-													
>> 07/00			_													-
awingFile																
JO>> Lo																-
10V01.G			5													
101-BH1																-
06332BH			-													-
LE P17(_													-
BOREHC																
RTENS .																-
Log M/		I	I	lI	EXCAVATION LOG TO) BE	EREA	D IN C	ONJUCTION WI	TH ACCOMPANYING	REPORT NOT	ES ANI) ABB	REVIATIO	NS	
ARTENS 2.00 LIB.GLB	ſ	C) Copy	art right Martens	en & Associate	S s Pty. Ltd.			Suite mail@	MARTENS & e 201, 20 George S Phone: (02) 9476 martens.com.au	ASSOCIATES PTY LTD St. Hornsby, NSW 2077 9999 Fax: (02) 9476 8 WEB: http://www.marter	Australia 767 ns.com.au		En	gine BOR	erin 2EH	g Log - OLE

PROJECT Contamination Assessment L XXXE RM CHECKED Series STEE 119 Batton FS, Montenzy, NSW CR-LCXC Hawacharp Socialized Ticle Data N NA PROJECT CCUMPUNDURSENDER 100 ndpt 100 ndpt NA APROJECT NA PROJECT CVANTON UNDERSIDE 100 ndpt Sampling Field Material Description If graph (Strange Contamination Account (Strange Contamination Accoun	14/02	IMENCED	ED	14/02/2	2018		COMPLE	ETED	14/02	2/201	18		REF	BH109)
STE 119 Batton St. Montenzy, NSW CECUPUT Van Tube EXTING Itelestance Result of the standard and the st	RM	GED		RM			CHECKE	ED							
EDUMMENT Puin Tuce EASTING IL SUIFACE 3.5 m DAT EXCUMPION DIMENSIONE 15.0 m regin Noming ARFECT - SLO Offing Sampling Field Material Description SLO SC SC Offing Sampling SOUROCK MATERIAL DESCRIPTION If SUBJECT SC SC Officing Sampling SAMPLE CR If SUBJECT SC SC SC Officing Sampling SAMPLE CR If SUBJECT SC SC SC SC Officing Sampling SAMPLE CR If SUBJECT SC SC SC SC Officing Sampling Sampling SC SC <td>Hawk</td> <td>LOGY</td> <td></td> <td>Hawkes</td> <td>sbury Sand</td> <td>stone</td> <td>VEGETA</td> <td>ATION</td> <td>N/A</td> <td></td> <td></td> <td></td> <td>Sheet PROJEC1</td> <td>1 O NO. P1706332</td> <td>F 1 !</td>	Hawk	LOGY		Hawkes	sbury Sand	stone	VEGETA	ATION	N/A				Sheet PROJEC1	1 O NO. P1706332	F 1 !
DISCUMPTION DIMENSIONE 15.0 m degin NORTHING APECT I ISO ISO UNDERSIDE 15.0 m degin SAMPLEOR ISO Field Material Description ISO		TING					RL SUR	FACE	3.7 m	n			DATUM	AHD	
Uniting Sampling Field Material Descripton 0		THING	6				ASPECT	Г	-				SLOPE	<2%	
Image: Section of the sectio						Fie	eld Mate	erial D	escrip	ptio	n				
L L	СК М	SOIL/ROO	/ROC	DCK MA	TERIAL D	DESC	RIPTION	N	MOISTURE	MUIS LUKE CONDITION	CONSISTENCY DENSITY		STRU AD OBSI	ICTURE AND DITIONAL ERVATIONS	
L Outcom Construction Construction <thc< td=""><td>grey/b oarse.</td><td>iyey SAND, g ND, white, c</td><td>AND, g nite, co</td><td>, grey/bro coarse.</td><td>own, coarse</td><td><u>e. </u></td><td></td><td></td><td>]</td><td>D</td><td>MD</td><td>FILL</td><td></td><td></td><td></td></thc<>	grey/b oarse.	iyey SAND, g ND, white, c	AND, g nite, co	, grey/bro coarse.	own, coarse	<u>e. </u>]	D	MD	FILL			
E L SS DOUGH DOUGH DOUGH SS DOUGH SS DOUGH DOUGH DOUGH SS DOUGH DOUGH SS DOUGH DOUGH SS DOUGH SS DOUGH SS DOUGH SS DOUGH SS DOUGH SS DOUGH	, grey,	avelly SAND	SAND	D, grey, c	coarse.						L				-
K L B I <tdi< td=""> <tdi< td=""> I</tdi<></tdi<>	, dark fine to	hite/yellow, t	SAND ellow, f	D, dark gi , fine to m	<u>rey/black, n</u> nedium gra	nediur ined.	m grained	l	-1			RESIDU	JAL SOIL		
E L B M MD 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1															-
1 2 1															
1 -										м	MD				
1.50 Hole Terminated at 1.50 m 1.50: Investige 1.50 Hole Terminated at 1.50 m 1.50: Investige 1.50 - - 1.50 - 1.50 <															_
1 1.50 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></t<>															-
1 1.22 1.50: Investige 1 2 1 2 1 1 1 1															-
	.50 m	minated at 1	d at 1	1.50 m								1.50: In	vestigation	limited.	
															-
															-
															_
															-
															-
															-
															_
															-
															-
															-
															-
															-
المعالم الم معالم المعالم المع	H AC	TION WIT	WIT	TH ACC	COMPANY	/ING	REPOR		ES AI	ND .	ABBI	I REVIAT	IONS		
MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au	SSOC t. Horr 9999 VEB: I	RTENS & A D George St (02) 9476 9 s.com.au V	S & A rge St 9476 9 .au V	ASSOCI St. Horns 9999 Fa WEB: ht	IATES PTY sby, NSW 2 fax: (02) 94 ttp://www.n	/ LTD 2077 / 176 87 narten	Australia 767 1s.com.au	u		Ł	En	gin BO	eerin REH	g Log OLE	-

CL	IENT		Monterey	/ Equity	Pty Ltd				COMMENCED	14/02/2018	COMPLETED	14/02	2/201	18		REF	BH110
PR	OJEC	т	Contamii	nation A	Assessment				LOGGED	RM	CHECKED					a	4 95 4
SIT	E		119 Bart	on St, N	fonterey, NSW				GEOLOGY	Hawkesbury Sandstone	VEGETATION	N/A				Sheet PROJECT	1 OF 1 NO. P1706332
EQ	UIPME	NT			Push Tube				EASTING		RL SURFACE	4.3 m	ı			DATUM	AHD
EXC	CAVAT	ION	DIMENSI	ONS	1.50 m depth		-		NORTHING		ASPECT	-				SLOPE	<2%
	-	Dr	illing		Sampling	1				Fi	ield Material D	escrip	ptio	n			
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RC	OCK MATERIAL DESC	RIPTION	MOISTIBE	CONDITION	CONSISTENCY DENSITY		STRU ADI OBSE	CTURE AND DITIONAL ERVATIONS
			_	4.30	6332/BH110/0.05/S/1 D 0.05 m		\bigotimes	SP F	ILL: SAND, brown,	, fine grained, with rootlets	s, gravels.				FILL / TO	OPSOIL	-
wingFlee> 07/03/2018 12:38 8.30.004 Daged Lab and InSitu Tool - DGD Lib: Martens 2.00.2016:11-13 Prj: Martens 2.00.2016:11-13 Prj: Martens 2.00.2016:11-13 Prj: Prj: Prj: Prj: Prj: Prj: Prj: Prj:		Not Encountered		0.50 3.80 0.75 3.55	6332/BH110/0.6/S/1 D 0.60 m 6332/BH110/0.8/S/1 D 0.80 m			SP F b SP S	LL: Gravelly SANI ick fragments.	D, dark grey/black, mediu um grained.	m grained, with tr	ace	Μ	L MD	FILL	vestigation I	
.GPJ < <draw< td=""><td></td><td></td><td>5</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></draw<>			5														-
MARTENS BOREHOLE P1706332BH101-BH110V0											DEDODT						-
MARTENS 2.00 LIB.GLB Log		ра	art right Martens	en « Associate	EXCAVATION LOG T(S 8 Pty. Ltd.) BI	<u>- RÉA</u>	U IN CC Suite mail@	MARTENS & A 201, 20 George S Phone: (02) 9476 martens.com.au	I H ACCOMPANYING ASSOCIATES PTY LTD St. Hornsby, NSW 2077 9999 Fax: (02) 9476 8' WEB: http://www.marter	KEPOR [NO] Australia 767 ns.com.au	ES A		En	gine BO	eerin REH	g Log - OLE

17 Attachment F – Data Validation Report

1. Sample Handling

- a. Were sample holding times met?
- b. Were samples in proper custody between the field and reaching the laboratory?
- c. Were the samples properly and adequately preserved?
- d. Were the samples received by the laboratory in good condition?

Yes No (Comments below) ✓ ✓ ✓

COMMENTS

Sample handling is:

✓ Satisfactory

Partially Satisfactory

Unsatisfactory

2. Precision / Accuracy Statement

- a. Was a NATA registered laboratory used?
- b. Did the laboratory perform the requested tests?
- c. Were laboratory methods adopted NATA endorsed?
- d. Were appropriate test procedures followed?
- e. Were reporting limits satisfactory?
- f. Was the NATA Seal on the reports?
- g. Were reports signed by an authorised person?

COMMENTS

No (Comments

Yes

✓

Precision / Accuracy of the Laboratory Report:

Satisfactory

√

Partially Satisfactory Unsatisfactory

3. Field Quality Assurance / Quality Control (QA/QC)

a.	Number of Primary Samples analysed (does not include duplicates)	Soil: Water: Material	14 - -				
b.	Number of days of sampling	1					
c.	Number and Type of QA/QC Samples analysed	Soil	Water				
	Intra-Laboratory Field Duplicates	2					
	Inter-Laboratory Field triplicates	-					
	Trip Blanks	1					
	Field Rinsate	-					
	Other (Field Blanks, Spikes, etc.)	1					
Co	mments	•					
Trip	Trip spike/blank used						

Media

Number

Field Duplicates

Adequate Numbers of intra-laboratory field duplicates analysed?

Adequate Numbers of inter-laboratory field duplicates analysed?

Were field duplicate RPDs within Control Limits?

- i. Organics
- ii. Metals / Inorganics
- iii. Nutrients

COMMENTS

RPDs were exceeded in duplicate samples 6332/DUP101 (copper) and

6332/DUP102 (lead, arsenic, mercury and zinc). This is likely attributed to

heterogenous fill material being sampled. All RPD sample exceedances are

below the adopted SAC with the exception of 6332/BH101 for copper. For

copper that exceeds the EIL, the higher value (35 mg/kg) has been adopted for

95% UCL analysis to ensure data validation.

Summary of Quality Assurance / Quality Control (QA/QC)

QA/QC Type	Satisfactory	Partially Satisfactory	Unsatisfactory
Sample handling	✓		
Precision / Accuracy of the Laboratory Report	✓		
Field QA / QC	√		
Laboratory Internal QA / QC	√		

Data Usability

- 1. Data directly usable
- 2. Data usable with the following corrections/modifications (see comment below)
- 3. Data not usable.

COMMENTS

✓

Field Duplicates (SOIL) SDG Filter: SDG in('ENVIR' Field ID Sample		SDG Field ID Sampled Date/Time	ENVIROLAB 2018-02-14T00:00:00 6332/BH101 13/02/2018	ENVIROLAB 2018-02-14T00:00:00 6332/DUP101 13/02/2018	RPD	ENVIROLAB 2018-02-14T00:00:00 6332/BH110 13/02/2018	ENVIROLAB 2018-02-14T00:00:00 6332/DUP102 13/02/2018	RPD	
Chem_Gro	ChemNam	Units	EQL						
Inorganics	Moisture	%	0.1	11.0	9.7	13	2.3	2.6	12
Lead	Lead	mg/kg	1	28.0	26.0	7	32.0	13.0	84
Metals	Arsenic	mg/kg	4	<4.0	<4.0	0	<4.0	12.0	100
	Cadmium	mg/kg	0.4	<0.4	<0.4	0	<0.4	<0.4	0
	Chromium	mg/kg	1	8.0	9.0	12	9.0	8.0	12
	Copper	mg/kg	1	35.0	24.0	37	8.0	10.0	22
	Mercury	mg/kg	0.1	<0.1	<0.1	0	1.7	3.5	69
	Nickel	mg/kg	1	14.0	12.0	15	3.0	3.0	0
	Zinc	mg/kg	1	26.0	28.0	7	40.0	89.0	76

*RPDs have only been considered where a concentration is greater than 1 times the EQL. **High RPDs are in bold (Acceptable RPDs for each EQL multiplier range are: 80 (1-10 x EQL); 50 (10-30 x EQL); 30 (> 30 x EQL)) ***Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods in the row header relate to those used in the primary laboratory

18 Attachment G – Laboratory Analytical Documentation

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 185170

Client Details	
Client	Martens & Associates Pty Ltd
Attention	Robert Mehaffey, Gray Taylor
Address	Suite 201, 20 George St, Hornsby, NSW, 2077

Sample Details	
Your Reference	P1706332 - 119 Barton St Monterey DSI
Number of Samples	41 soil
Date samples received	14/02/2018
Date completed instructions received	14/02/2018

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details					
Date results requested by	21/02/2018				
Date of Issue	20/02/2018				
NATA Accreditation Number 2901. This document shall not be reproduced except in full.					
Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *					

Results Approved By Dragana Tomas, Senior Chemist Jeremy Faircloth, Organics Supervisor Long Pham, Team Leader, Metals

Authorised By

David Springer, General Manager

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		185170-1	185170-4	185170-10	185170-11	185170-18
Your Reference	UNITS	6332/BH101	6332/BH101	6332/BH103	6332/BH103	6332/BH106
Depth		0.15	1.5	0.2	0.5	0.25
Date Sampled		13/02/2018	13/02/2018	13/02/2018	13/02/2018	13/02/2018
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	15/02/2018	15/02/2018	15/02/2018	15/02/2018	15/02/2018
Date analysed	-	19/02/2018	19/02/2018	19/02/2018	19/02/2018	19/02/2018
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	99	100	99	107	104
vTRH(C6-C10)/BTEXN in Soil						
vTRH(C6-C10)/BTEXN in Soil Our Reference		185170-19	185170-21	185170-28	185170-32	185170-33
vTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference	UNITS	185170-19 6332/BH106	185170-21 6332/BH107	185170-28 6332/BH109	185170-32 6332/BH110	185170-33 6332/BH110
vTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth	UNITS	185170-19 6332/BH106 0.4	185170-21 6332/BH107 0.1	185170-28 6332/BH109 0.1	185170-32 6332/BH110 0.05	185170-33 6332/BH110 0.60.8
vTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled	UNITS	185170-19 6332/BH106 0.4 13/02/2018	185170-21 6332/BH107 0.1 13/02/2018	185170-28 6332/BH109 0.1 13/02/2018	185170-32 6332/BH110 0.05 13/02/2018	185170-33 6332/BH110 0.60.8 13/02/2018
vTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled Type of sample	UNITS	185170-19 6332/BH106 0.4 13/02/2018 soil	185170-21 6332/BH107 0.1 13/02/2018 soil	185170-28 6332/BH109 0.1 13/02/2018 soil	185170-32 6332/BH110 0.05 13/02/2018 soil	185170-33 6332/BH110 0.60.8 13/02/2018 soil
vTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted	UNITS -	185170-19 6332/BH106 0.4 13/02/2018 soil 15/02/2018	185170-21 6332/BH107 0.1 13/02/2018 soil 15/02/2018	185170-28 6332/BH109 0.1 13/02/2018 soil 15/02/2018	185170-32 6332/BH110 0.05 13/02/2018 soil 15/02/2018	185170-33 6332/BH110 0.60.8 13/02/2018 soil 15/02/2018
vTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed	UNITS - -	185170-19 6332/BH106 0.4 13/02/2018 soil 15/02/2018 19/02/2018	185170-21 6332/BH107 0.1 13/02/2018 soil 15/02/2018 19/02/2018	185170-28 6332/BH109 0.1 13/02/2018 soil 15/02/2018 19/02/2018	185170-32 6332/BH110 0.05 13/02/2018 soil 15/02/2018 19/02/2018	185170-33 6332/BH110 0.60.8 13/02/2018 soil 15/02/2018 19/02/2018
VTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C6 - C9	UNITS - - mg/kg	185170-19 6332/BH106 0.4 13/02/2018 soil 15/02/2018 19/02/2018 <25	185170-21 6332/BH107 0.1 13/02/2018 soil 15/02/2018 19/02/2018 <25	185170-28 6332/BH109 0.1 13/02/2018 soil 15/02/2018 19/02/2018 <25	185170-32 6332/BH110 0.05 13/02/2018 soil 15/02/2018 19/02/2018 <25	185170-33 6332/BH110 0.60.8 13/02/2018 soil 15/02/2018 19/02/2018 <25
VTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C6 - C9 TRH C6 - C10	UNITS - mg/kg mg/kg	185170-19 6332/BH106 0.4 13/02/2018 soil 15/02/2018 19/02/2018 <25 <25	185170-21 6332/BH107 0.1 13/02/2018 soil 15/02/2018 19/02/2018 <25 <25	185170-28 6332/BH109 0.1 13/02/2018 soil 15/02/2018 19/02/2018 <25 <25	185170-32 6332/BH110 0.05 13/02/2018 soil 15/02/2018 19/02/2018 <25 <25	185170-33 6332/BH110 0.60.8 13/02/2018 soil 15/02/2018 19/02/2018 <25 <25
VTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C6 - C9 TRH C6 - C10 VTPH C6 - C10 less BTEX (F1)	UNITS - - mg/kg mg/kg mg/kg	185170-19 6332/BH106 0.4 13/02/2018 soil 15/02/2018 19/02/2018 <25 <25 <25	185170-21 6332/BH107 0.1 13/02/2018 soil 15/02/2018 19/02/2018 <25 <25 <25	185170-28 6332/BH109 0.1 13/02/2018 soil 15/02/2018 19/02/2018 <25 <25 <25	185170-32 6332/BH110 0.05 13/02/2018 soil 15/02/2018 19/02/2018 <25 <25 <25	185170-33 6332/BH110 0.60.8 13/02/2018 soil 15/02/2018 19/02/2018 <25 <25 <25
vTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C6 - C9 TRH C6 - C10 vTPH C6 - C10 less BTEX (F1) Benzene	UNITS - mg/kg mg/kg mg/kg mg/kg	185170-19 6332/BH106 0.4 13/02/2018 soil 15/02/2018 19/02/2018 <25 <25 <25 <25 <25	185170-21 6332/BH107 0.1 13/02/2018 soil 15/02/2018 19/02/2018 <25 <25 <25 <25 <0.2	185170-28 6332/BH109 0.1 13/02/2018 soil 15/02/2018 19/02/2018 <25 <25 <25 <25 <0.2	185170-32 6332/BH110 0.05 13/02/2018 soil 15/02/2018 19/02/2018 <25 <25 <25 <25 <25	185170-33 6332/BH110 0.60.8 13/02/2018 soil 15/02/2018 19/02/2018 <25 <25 <25 <25 <0.2
VTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C6 - C9 TRH C6 - C10 VTPH C6 - C10 less BTEX (F1) Benzene Toluene	UNITS - mg/kg mg/kg mg/kg mg/kg mg/kg	185170-19 6332/BH106 0.4 13/02/2018 soil 15/02/2018 19/02/2018 <25 <25 <25 <25 <0.2 <0.2	185170-21 6332/BH107 0.1 13/02/2018 soil 15/02/2018 19/02/2018 <25 <25 <25 <25 <0.2 <0.2	185170-28 6332/BH109 0.1 13/02/2018 soil 15/02/2018 19/02/2018 <25 <25 <25 <25 <0.2 <0.2	185170-32 6332/BH110 0.05 13/02/2018 soil 15/02/2018 19/02/2018 <25 <25 <25 <25 <0.2 <0.2	185170-33 6332/BH110 0.60.8 13/02/2018 soil 15/02/2018 19/02/2018 <25 <25 <25 <0.2 <0.2 <0.5
VTRH(C6-C10)/BTEXN in SoilOur ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH C6 - C9TRH C6 - C10vTPH C6 - C10 less BTEX (F1)BenzeneTolueneEthylbenzene	UNITS - - mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	185170-19 6332/BH106 0.4 13/02/2018 soil 15/02/2018 19/02/2018 <25 <25 <25 <25 <0.2 <0.5 <1	185170-21 6332/BH107 0.1 13/02/2018 soil 15/02/2018 19/02/2018 <25 <25 <25 <25 <0.2 <0.5 <1	185170-28 6332/BH109 0.1 13/02/2018 soil 15/02/2018 19/02/2018 <25 <25 <25 <25 <0.2 <0.5 <1	185170-32 6332/BH110 0.05 13/02/2018 soil 15/02/2018 19/02/2018 <25 <25 <25 <25 <0.2 <0.5 <1	185170-33 6332/BH110 0.60.8 13/02/2018 soil 15/02/2018 19/02/2018 <25 <25 <25 <25 <0.2 <0.2 <0.5
VTRH(C6-C10)/BTEXN in SoilOur ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH C6 - C9TRH C6 - C10vTPH C6 - C10 less BTEX (F1)BenzeneTolueneEthylbenzenem+p-xylene	UNITS - mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	185170-19 6332/BH106 0.4 13/02/2018 soil 15/02/2018 19/02/2018 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2	185170-21 6332/BH107 0.1 13/02/2018 soil 15/02/2018 (15/02/2018 (25) <25 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <2	185170-28 6332/BH109 0.1 13/02/2018 soil 15/02/2018 (15/02/2018 (25) <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <1	185170-32 6332/BH110 0.05 13/02/2018 soil 15/02/2018 (15/02/2018 (25) <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <1	185170-33 6332/BH110 0.60.8 13/02/2018 soil 15/02/2018 19/02/2018 <25 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2
VTRH(C6-C10)/BTEXN in SoilOur ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH C6 - C9TRH C6 - C10vTPH C6 - C10 less BTEX (F1)BenzeneTolueneEthylbenzenem+p-xyleneo-Xylene	UNITS - - mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	185170-19 6332/BH106 0.4 13/02/2018 soil 15/02/2018 19/02/2018 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2 <1 <2	185170-21 6332/BH107 0.1 13/02/2018 soil 15/02/2018 19/02/2018 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2 <1 <2	185170-28 6332/BH109 0.1 13/02/2018 soil 15/02/2018 19/02/2018 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2 <1 <2	185170-32 6332/BH110 0.05 13/02/2018 soil 15/02/2018 19/02/2018 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <1 <2 <1	185170-33 6332/BH110 0.60.8 13/02/2018 soil 15/02/2018 19/02/2018 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2 <1
VTRH(C6-C10)/BTEXN in SoilOur ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH C6 - C9TRH C6 - C10vTPH C6 - C10 less BTEX (F1)BenzeneTolueneEthylbenzenem+p-xyleneo-Xylenenaphthalene	UNITS - - mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	185170-19 6332/BH106 0.4 13/02/2018 soil 15/02/2018 19/02/2018 <25 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <1 <2 <1 <1	185170-21 6332/BH107 0.1 13/02/2018 soil 15/02/2018 19/02/2018 <25 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <1 <2 <1 <1	185170-28 6332/BH109 0.1 13/02/2018 soil 15/02/2018 19/02/2018 <25 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <1 <2 <1 <1	185170-32 6332/BH110 0.05 13/02/2018 soil 15/02/2018 19/02/2018 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <1 <2 <1 <1	185170-33 6332/BH110 0.60.8 13/02/2018 soil 15/02/2018 19/02/2018 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2 <1 <2 <1
VTRH(C6-C10)/BTEXN in SoilOur ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH C6 - C9TRH C6 - C10vTPH C6 - C10 less BTEX (F1)BenzeneTolueneEthylbenzenem+p-xyleneo-XylenenaphthaleneTotal +ve Xylenes	UNITS - - mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	185170-19 6332/BH106 0.4 13/02/2018 soil 15/02/2018 19/02/2018 <25 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <1 <2 <1 <1 <1	185170-21 6332/BH107 0.1 13/02/2018 soil 15/02/2018 (25 <25 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <2 <0.5 <1 <2 <1 <1 <1 <1	185170-28 6332/BH109 0.1 13/02/2018 soil 15/02/2018 19/02/2018 <25 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <2 <1 <1 <1 <1	185170-32 6332/BH110 0.05 13/02/2018 soil 15/02/2018 19/02/2018 <25 <25 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <2 <1 <1 <1 <1	185170-33 6332/BH110 0.60.8 13/02/2018 soil 15/02/2018 19/02/2018 <25 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <2 <1 <1 <1

vTRH(C6-C10)/BTEXN in Soil								
Our Reference		185170-39	185170-40					
Your Reference	UNITS	Trip Blank	Trip Spike					
Depth		-	-					
Date Sampled		13/02/2018	13/02/2018					
Type of sample		soil	soil					
Date extracted	-	15/02/2018	15/02/2018					
Date analysed	-	19/02/2018	19/02/2018					
TRH C ₆ - C ₉	mg/kg	<25	[NA]					
TRH C ₆ - C ₁₀	mg/kg	<25	[NA]					
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	[NA]					
Benzene	mg/kg	<0.2	95%					
Toluene	mg/kg	<0.5	95%					
Ethylbenzene	mg/kg	<1	98%					
m+p-xylene	mg/kg	<2	96%					
o-Xylene	mg/kg	<1	97%					
naphthalene	mg/kg	<1	[NA]					
Total +ve Xylenes	mg/kg	<1	[NA]					
Surrogate aaa-Trifluorotoluene	%	102	102					

svTRH (C10-C40) in Soil									
Our Reference		185170-1	185170-4	185170-10	185170-11	185170-18			
Your Reference	UNITS	6332/BH101	6332/BH101	6332/BH103	6332/BH103	6332/BH106			
Depth		0.15	1.5	0.2	0.5	0.25			
Date Sampled		13/02/2018	13/02/2018	13/02/2018	13/02/2018	13/02/2018			
Type of sample		soil	soil	soil	soil	soil			
Date extracted	-	15/02/2018	15/02/2018	15/02/2018	15/02/2018	15/02/2018			
Date analysed	-	18/02/2018	18/02/2018	18/02/2018	18/02/2018	18/02/2018			
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50			
TRH C ₁₅ - C ₂₈	mg/kg	<100	140	170	<100	<100			
TRH C ₂₉ - C ₃₆	mg/kg	<100	120	140	<100	<100			
TRH >C10-C16	mg/kg	<50	<50	<50	<50	<50			
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50			
TRH >C ₁₆ -C ₃₄	mg/kg	<100	240	260	<100	<100			
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100			
Total +ve TRH (>C10-C40)	mg/kg	<50	240	260	<50	<50			
Surrogate o-Terphenyl	%	79	82	85	79	79			

svTRH (C10-C40) in Soil						
Our Reference		185170-19	185170-21	185170-28	185170-32	185170-33
Your Reference	UNITS	6332/BH106	6332/BH107	6332/BH109	6332/BH110	6332/BH110
Depth		0.4	0.1	0.1	0.05	0.60.8
Date Sampled		13/02/2018	13/02/2018	13/02/2018	13/02/2018	13/02/2018
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	15/02/2018	15/02/2018	15/02/2018	15/02/2018	15/02/2018
Date analysed	-	18/02/2018	18/02/2018	18/02/2018	18/02/2018	18/02/2018
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	80	80	78	82	83

PAHs in Soil						
Our Reference		185170-1	185170-4	185170-10	185170-11	185170-18
Your Reference	UNITS	6332/BH101	6332/BH101	6332/BH103	6332/BH103	6332/BH106
Depth		0.15	1.5	0.2	0.5	0.25
Date Sampled		13/02/2018	13/02/2018	13/02/2018	13/02/2018	13/02/2018
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	15/02/2018	15/02/2018	15/02/2018	15/02/2018	15/02/2018
Date analysed	-	16/02/2018	16/02/2018	16/02/2018	16/02/2018	16/02/2018
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	0.5	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	0.2	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.8	4.3	0.3	<0.1	<0.1
Anthracene	mg/kg	0.2	0.8	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	1.3	8.3	0.3	<0.1	<0.1
Pyrene	mg/kg	1.3	7.9	0.3	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.5	2.3	0.2	<0.1	<0.1
Chrysene	mg/kg	0.7	3.2	0.2	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	0.9	4.9	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	0.53	3.1	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	0.3	2.6	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	0.4	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	0.3	2.9	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	7.1	41	1.3	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	0.7	4.6	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	0.8	4.6	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	0.8	4.6	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	97	96	88	94	95

PAHs in Soil						
Our Reference		185170-19	185170-21	185170-28	185170-32	185170-33
Your Reference	UNITS	6332/BH106	6332/BH107	6332/BH109	6332/BH110	6332/BH110
Depth		0.4	0.1	0.1	0.05	0.60.8
Date Sampled		13/02/2018	13/02/2018	13/02/2018	13/02/2018	13/02/2018
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	15/02/2018	15/02/2018	15/02/2018	15/02/2018	15/02/2018
Date analysed	-	16/02/2018	16/02/2018	16/02/2018	16/02/2018	16/02/2018
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.6	<0.1	<0.1	<0.1	0.3
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.3	<0.1	<0.1	<0.1	0.1
Pyrene	mg/kg	0.2	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.2	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	1.6	<0.05	<0.05	<0.05	0.4
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	91	93	94	95	85

Organochlorine Pesticides in soil						
Our Reference		185170-1	185170-4	185170-10	185170-11	185170-18
Your Reference	UNITS	6332/BH101	6332/BH101	6332/BH103	6332/BH103	6332/BH106
Depth		0.15	1.5	0.2	0.5	0.25
Date Sampled		13/02/2018	13/02/2018	13/02/2018	13/02/2018	13/02/2018
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	15/02/2018	15/02/2018	15/02/2018	15/02/2018	15/02/2018
Date analysed	-	16/02/2018	16/02/2018	16/02/2018	16/02/2018	16/02/2018
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	98	96	88	93	95

Organochlorine Pesticides in soil						
Our Reference		185170-19	185170-21	185170-28	185170-32	185170-33
Your Reference	UNITS	6332/BH106	6332/BH107	6332/BH109	6332/BH110	6332/BH110
Depth		0.4	0.1	0.1	0.05	0.60.8
Date Sampled		13/02/2018	13/02/2018	13/02/2018	13/02/2018	13/02/2018
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	15/02/2018	15/02/2018	15/02/2018	15/02/2018	15/02/2018
Date analysed	-	16/02/2018	16/02/2018	16/02/2018	16/02/2018	16/02/2018
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	0.2	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	0.2	<0.1
Surrogate TCMX	%	91	95	95	96	96

Organophosphorus Pesticides						
Our Reference		185170-1	185170-4	185170-10	185170-11	185170-18
Your Reference	UNITS	6332/BH101	6332/BH101	6332/BH103	6332/BH103	6332/BH106
Depth		0.15	1.5	0.2	0.5	0.25
Date Sampled		13/02/2018	13/02/2018	13/02/2018	13/02/2018	13/02/2018
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	15/02/2018	15/02/2018	15/02/2018	15/02/2018	15/02/2018
Date analysed	-	16/02/2018	16/02/2018	16/02/2018	16/02/2018	16/02/2018
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	98	96	88	93	95

Organophosphorus Pesticides						
Our Reference		185170-19	185170-21	185170-28	185170-32	185170-33
Your Reference	UNITS	6332/BH106	6332/BH107	6332/BH109	6332/BH110	6332/BH110
Depth		0.4	0.1	0.1	0.05	0.60.8
Date Sampled		13/02/2018	13/02/2018	13/02/2018	13/02/2018	13/02/2018
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	15/02/2018	15/02/2018	15/02/2018	15/02/2018	15/02/2018
Date analysed	-	16/02/2018	16/02/2018	16/02/2018	16/02/2018	16/02/2018
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	91	95	95	96	96

Acid Extractable metals in soil					_	
Our Reference		185170-1	185170-4	185170-10	185170-11	185170-18
Your Reference	UNITS	6332/BH101	6332/BH101	6332/BH103	6332/BH103	6332/BH106
Depth		0.15	1.5	0.2	0.5	0.25
Date Sampled		13/02/2018	13/02/2018	13/02/2018	13/02/2018	13/02/2018
Type of sample		soil	soil	soil	soil	soil
Date prepared	-	15/02/2018	15/02/2018	15/02/2018	15/02/2018	15/02/2018
Date analysed	-	15/02/2018	15/02/2018	15/02/2018	15/02/2018	15/02/2018
Arsenic	mg/kg	<4	13	<4	<4	<4
Cadmium	mg/kg	<0.4	3	<0.4	<0.4	<0.4
Chromium	mg/kg	8	29	6	<1	2
Copper	mg/kg	35	860	57	1	3
Lead	mg/kg	28	1,700	15	1	4
Mercury	mg/kg	<0.1	0.5	<0.1	<0.1	0.2
Nickel	mg/kg	14	25	21	<1	4
Zinc	mg/kg	26	1,200	12	<1	6

Acid Extractable metals in soil						
Our Reference		185170-19	185170-21	185170-28	185170-32	185170-33
Your Reference	UNITS	6332/BH106	6332/BH107	6332/BH109	6332/BH110	6332/BH110
Depth		0.4	0.1	0.1	0.05	0.60.8
Date Sampled		13/02/2018	13/02/2018	13/02/2018	13/02/2018	13/02/2018
Type of sample		soil	soil	soil	soil	soil
Date prepared	-	15/02/2018	15/02/2018	15/02/2018	15/02/2018	15/02/2018
Date analysed	-	15/02/2018	15/02/2018	15/02/2018	15/02/2018	15/02/2018
Arsenic	mg/kg	<4	<4	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	6	7	5	9	4
Copper	mg/kg	15	<1	2	8	4
Lead	mg/kg	19	1	3	32	75
Mercury	mg/kg	<0.1	<0.1	<0.1	1.7	0.2
Nickel	mg/kg	46	1	2	3	5
Zinc	mg/kg	15	5	17	40	9

Acid Extractable metals in soil						
Our Reference		185170-37	185170-38			
Your Reference	UNITS	6332/DUP101	6332/DUP102			
Depth		-	-			
Date Sampled		13/02/2018	13/02/2018			
Type of sample		soil	soil			
Date prepared	-	15/02/2018	15/02/2018			
Date analysed	-	15/02/2018	15/02/2018			
Arsenic	mg/kg	<4	12			
Cadmium	mg/kg	<0.4	<0.4			
Chromium	mg/kg	9	8			
Copper	mg/kg	24	10			
Lead	mg/kg	26	13			
Mercury	mg/kg	<0.1	3.5			
Nickel	mg/kg	12	3			
Zinc	mg/kg	28	89			
Moisture						
----------------	-------	-------------	-------------	------------	------------	------------
Our Reference		185170-1	185170-4	185170-10	185170-11	185170-18
Your Reference	UNITS	6332/BH101	6332/BH101	6332/BH103	6332/BH103	6332/BH106
Depth		0.15	1.5	0.2	0.5	0.25
Date Sampled		13/02/2018	13/02/2018	13/02/2018	13/02/2018	13/02/2018
Type of sample		soil	soil	soil	soil	soil
Date prepared	-	15/02/2018	15/02/2018	15/02/2018	15/02/2018	15/02/2018
Date analysed	-	16/02/2018	16/02/2018	16/02/2018	16/02/2018	16/02/2018
Moisture	%	11	23	13	9.0	9.5
Moisture			·			
Our Reference		185170-19	185170-21	185170-28	185170-32	185170-33
Your Reference	UNITS	6332/BH106	6332/BH107	6332/BH109	6332/BH110	6332/BH110
Depth		0.4	0.1	0.1	0.05	0.60.8
Date Sampled		13/02/2018	13/02/2018	13/02/2018	13/02/2018	13/02/2018
Type of sample		soil	soil	soil	soil	soil
Date prepared	-	15/02/2018	15/02/2018	15/02/2018	15/02/2018	15/02/2018
Date analysed	-	16/02/2018	16/02/2018	16/02/2018	16/02/2018	16/02/2018
Moisture	%	16	7.3	8.6	2.3	2.5
Moisture				-		
Our Reference		185170-37	185170-38			
Your Reference	UNITS	6332/DUP101	6332/DUP102			
Depth		-	-			
Date Sampled		13/02/2018	13/02/2018			
Type of sample		soil	soil			
Date prepared	-	15/02/2018	15/02/2018			

16/02/2018

9.7

%

16/02/2018

2.6

Date analysed

Moisture

Method ID	Methodology Summary
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.
Org-008	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" are="" at="" conservative<br="" is="" most="" pql.="" the="" this="">approach and can give false positive TEQs given that PAHs that contribute to the TEQ calculation may not be present. 2. 'EQ zero'values are assuming all contributing PAHs reported as <pql and<br="" approach="" are="" conservative="" is="" least="" the="" this="" zero.="">is more susceptible to false negative TEQs when PAHs that contribute to the TEQ calculation are present but below PQL. 3. 'EQ half PQL'values are assuming all contributing PAHs reported as <pql a="" are="" half="" hence="" mid-point<br="" pql.="" stipulated="" the="">between the most and least conservative approaches above. Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PAHs" is simply a sum of the positive individual PAHs.</pql></pql></pql>

Method ID	Methodology Summary
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CONT	ROL: vTRH	(C6-C10)	/BTEXN in Soil		Duplicate Sp					covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	[NT]
Date extracted	-			15/02/2018	1	15/02/2018	15/02/2018		15/02/2018	[NT]
Date analysed	-			19/02/2018	1	19/02/2018	19/02/2018		19/02/2018	[NT]
TRH C ₆ - C ₉	mg/kg	25	Org-016	<25	1	<25	<25	0	104	[NT]
TRH C ₆ - C ₁₀	mg/kg	25	Org-016	<25	1	<25	<25	0	104	[NT]
Benzene	mg/kg	0.2	Org-016	<0.2	1	<0.2	<0.2	0	116	[NT]
Toluene	mg/kg	0.5	Org-016	<0.5	1	<0.5	<0.5	0	101	[NT]
Ethylbenzene	mg/kg	1	Org-016	<1	1	<1	<1	0	88	[NT]
m+p-xylene	mg/kg	2	Org-016	<2	1	<2	<2	0	108	[NT]
o-Xylene	mg/kg	1	Org-016	<1	1	<1	<1	0	95	[NT]
naphthalene	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	[NT]
Surrogate aaa-Trifluorotoluene	%		Org-016	105	1	99	102	3	104	[NT]

QUALITY CONT	ROL: vTRH	(C6-C10)	BTEXN in Soil		Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	33	15/02/2018	15/02/2018		[NT]	[NT]
Date analysed	-			[NT]	33	19/02/2018	19/02/2018		[NT]	[NT]
TRH C ₆ - C ₉	mg/kg	25	Org-016	[NT]	33	<25	<25	0	[NT]	[NT]
TRH C ₆ - C ₁₀	mg/kg	25	Org-016	[NT]	33	<25	<25	0	[NT]	[NT]
Benzene	mg/kg	0.2	Org-016	[NT]	33	<0.2	<0.2	0	[NT]	[NT]
Toluene	mg/kg	0.5	Org-016	[NT]	33	<0.5	<0.5	0	[NT]	[NT]
Ethylbenzene	mg/kg	1	Org-016	[NT]	33	<1	<1	0	[NT]	[NT]
m+p-xylene	mg/kg	2	Org-016	[NT]	33	<2	<2	0	[NT]	[NT]
o-Xylene	mg/kg	1	Org-016	[NT]	33	<1	<1	0	[NT]	[NT]
naphthalene	mg/kg	1	Org-014	[NT]	33	<1	<1	0	[NT]	[NT]
Surrogate aaa-Trifluorotoluene	%		Org-016	[NT]	33	105	110	5	[NT]	[NT]

QUALITY CO	NTROL: svT	RH (C10	-C40) in Soil		Duplicate Spike Re				covery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	[NT]
Date extracted	-			14/02/2018	1	15/02/2018	15/02/2018		14/02/2018	
Date analysed	-			18/02/2018	1	18/02/2018	18/02/2018		18/02/2018	
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-003	<50	1	<50	<50	0	108	
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-003	<100	1	<100	<100	0	92	
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-003	<100	1	<100	<100	0	123	
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-003	<50	1	<50	<50	0	108	
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-003	<100	1	<100	<100	0	92	
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-003	<100	1	<100	<100	0	123	
Surrogate o-Terphenyl	%		Org-003	82	1	79	79	0	85	

QUALITY CO	NTROL: svT	RH (C10	-C40) in Soil		Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	33	15/02/2018	15/02/2018			[NT]
Date analysed	-			[NT]	33	18/02/2018	18/02/2018			[NT]
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-003	[NT]	33	<50	<50	0		[NT]
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-003	[NT]	33	<100	<100	0		[NT]
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-003	[NT]	33	<100	<100	0		[NT]
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-003	[NT]	33	<50	<50	0		[NT]
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-003	[NT]	33	<100	<100	0		[NT]
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-003	[NT]	33	<100	<100	0		[NT]
Surrogate o-Terphenyl	%		Org-003	[NT]	33	83	83	0		[NT]

QUALIT	TY CONTRO	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	[NT]
Date extracted	-			15/02/2018	1	15/02/2018	15/02/2018		15/02/2018	[NT]
Date analysed	-			16/02/2018	1	16/02/2018	16/02/2018		16/02/2018	[NT]
Naphthalene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	92	[NT]
Acenaphthylene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Acenaphthene	mg/kg	0.1	Org-012	<0.1	1	0.1	<0.1	0	[NT]	[NT]
Fluorene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	97	[NT]
Phenanthrene	mg/kg	0.1	Org-012	<0.1	1	0.8	0.6	29	97	[NT]
Anthracene	mg/kg	0.1	Org-012	<0.1	1	0.2	0.1	67	[NT]	[NT]
Fluoranthene	mg/kg	0.1	Org-012	<0.1	1	1.3	0.8	48	97	[NT]
Pyrene	mg/kg	0.1	Org-012	<0.1	1	1.3	0.8	48	97	[NT]
Benzo(a)anthracene	mg/kg	0.1	Org-012	<0.1	1	0.5	0.3	50	[NT]	[NT]
Chrysene	mg/kg	0.1	Org-012	<0.1	1	0.7	0.4	55	115	[NT]
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-012	<0.2	1	0.9	0.6	40	[NT]	[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-012	<0.05	1	0.53	0.3	55	89	[NT]
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012	<0.1	1	0.3	0.2	40	[NT]	[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012	<0.1	1	0.3	0.2	40	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-012	94	1	97	92	5	91	[NT]

QUALIT	Y CONTRO	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	33	15/02/2018	15/02/2018		[NT]	[NT]
Date analysed	-			[NT]	33	16/02/2018	16/02/2018		[NT]	[NT]
Naphthalene	mg/kg	0.1	Org-012	[NT]	33	<0.1	<0.1	0	[NT]	[NT]
Acenaphthylene	mg/kg	0.1	Org-012	[NT]	33	<0.1	<0.1	0	[NT]	[NT]
Acenaphthene	mg/kg	0.1	Org-012	[NT]	33	<0.1	<0.1	0	[NT]	[NT]
Fluorene	mg/kg	0.1	Org-012	[NT]	33	<0.1	<0.1	0	[NT]	[NT]
Phenanthrene	mg/kg	0.1	Org-012	[NT]	33	0.3	0.2	40	[NT]	[NT]
Anthracene	mg/kg	0.1	Org-012	[NT]	33	<0.1	<0.1	0	[NT]	[NT]
Fluoranthene	mg/kg	0.1	Org-012	[NT]	33	0.1	<0.1	0	[NT]	[NT]
Pyrene	mg/kg	0.1	Org-012	[NT]	33	<0.1	<0.1	0	[NT]	[NT]
Benzo(a)anthracene	mg/kg	0.1	Org-012	[NT]	33	<0.1	<0.1	0	[NT]	[NT]
Chrysene	mg/kg	0.1	Org-012	[NT]	33	<0.1	<0.1	0	[NT]	[NT]
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-012	[NT]	33	<0.2	<0.2	0	[NT]	[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-012	[NT]	33	<0.05	<0.05	0	[NT]	[NT]
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012	[NT]	33	<0.1	<0.1	0	[NT]	[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012	[NT]	33	<0.1	<0.1	0	[NT]	[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012	[NT]	33	<0.1	<0.1	0	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-012	[NT]	33	85	86	1	[NT]	[NT]

QUALITY CONTR	ROL: Organo	chlorine I	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	[NT]
Date extracted	-			15/02/2018	1	15/02/2018	15/02/2018		15/02/2018	[NT]
Date analysed	-			16/02/2018	1	16/02/2018	16/02/2018		16/02/2018	[NT]
НСВ	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
alpha-BHC	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	99	[NT]
gamma-BHC	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
beta-BHC	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	78	[NT]
Heptachlor	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	70	[NT]
delta-BHC	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aldrin	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	91	[NT]
Heptachlor Epoxide	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	85	[NT]
gamma-Chlordane	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
alpha-chlordane	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Endosulfan I	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
pp-DDE	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	98	[NT]
Dieldrin	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	86	[NT]
Endrin	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	84	[NT]
pp-DDD	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	65	[NT]
Endosulfan II	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
pp-DDT	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Endrin Aldehyde	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	81	[NT]
Methoxychlor	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-005	98	1	98	93	5	101	[NT]

QUALITY CONTR	OL: Organo	chlorine I	Pesticides in soil		Duplicate				Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]	
Date extracted	-			[NT]	33	15/02/2018	15/02/2018		[NT]	[NT]	
Date analysed	-			[NT]	33	16/02/2018	16/02/2018		[NT]	[NT]	
НСВ	mg/kg	0.1	Org-005	[NT]	33	<0.1	<0.1	0	[NT]	[NT]	
alpha-BHC	mg/kg	0.1	Org-005	[NT]	33	<0.1	<0.1	0	[NT]	[NT]	
gamma-BHC	mg/kg	0.1	Org-005	[NT]	33	<0.1	<0.1	0	[NT]	[NT]	
beta-BHC	mg/kg	0.1	Org-005	[NT]	33	<0.1	<0.1	0	[NT]	[NT]	
Heptachlor	mg/kg	0.1	Org-005	[NT]	33	<0.1	<0.1	0	[NT]	[NT]	
delta-BHC	mg/kg	0.1	Org-005	[NT]	33	<0.1	<0.1	0	[NT]	[NT]	
Aldrin	mg/kg	0.1	Org-005	[NT]	33	<0.1	<0.1	0	[NT]	[NT]	
Heptachlor Epoxide	mg/kg	0.1	Org-005	[NT]	33	<0.1	<0.1	0	[NT]	[NT]	
gamma-Chlordane	mg/kg	0.1	Org-005	[NT]	33	<0.1	<0.1	0	[NT]	[NT]	
alpha-chlordane	mg/kg	0.1	Org-005	[NT]	33	<0.1	<0.1	0	[NT]	[NT]	
Endosulfan I	mg/kg	0.1	Org-005	[NT]	33	<0.1	<0.1	0	[NT]	[NT]	
pp-DDE	mg/kg	0.1	Org-005	[NT]	33	<0.1	<0.1	0	[NT]	[NT]	
Dieldrin	mg/kg	0.1	Org-005	[NT]	33	<0.1	<0.1	0	[NT]	[NT]	
Endrin	mg/kg	0.1	Org-005	[NT]	33	<0.1	<0.1	0	[NT]	[NT]	
pp-DDD	mg/kg	0.1	Org-005	[NT]	33	<0.1	<0.1	0	[NT]	[NT]	
Endosulfan II	mg/kg	0.1	Org-005	[NT]	33	<0.1	<0.1	0	[NT]	[NT]	
pp-DDT	mg/kg	0.1	Org-005	[NT]	33	<0.1	<0.1	0	[NT]	[NT]	
Endrin Aldehyde	mg/kg	0.1	Org-005	[NT]	33	<0.1	<0.1	0	[NT]	[NT]	
Endosulfan Sulphate	mg/kg	0.1	Org-005	[NT]	33	<0.1	<0.1	0	[NT]	[NT]	
Methoxychlor	mg/kg	0.1	Org-005	[NT]	33	<0.1	<0.1	0	[NT]	[NT]	
Surrogate TCMX	%		Org-005	[NT]	33	96	95	1	[NT]	[NT]	

QUALITY CONT	ROL: Organ	ophosph	orus Pesticides			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	[NT]
Date extracted	-			15/02/2018	1	15/02/2018	15/02/2018		15/02/2018	
Date analysed	-			16/02/2018	1	16/02/2018	16/02/2018		16/02/2018	
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	[NT]	
Bromophos-ethyl	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	[NT]	
Chlorpyriphos	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	98	
Chlorpyriphos-methyl	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	[NT]	
Diazinon	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	[NT]	
Dichlorvos	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	88	
Dimethoate	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	[NT]	
Ethion	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	107	
Fenitrothion	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	93	
Malathion	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	116	
Parathion	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	92	
Ronnel	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	98	
Surrogate TCMX	%		Org-008	98	1	98	93	5	101	

QUALITY CONT	ROL: Organ	ophospho	orus Pesticides			Du	Spike Re	Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	33	15/02/2018	15/02/2018		[NT]	
Date analysed	-			[NT]	33	16/02/2018	16/02/2018		[NT]	
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-008	[NT]	33	<0.1	<0.1	0	[NT]	
Bromophos-ethyl	mg/kg	0.1	Org-008	[NT]	33	<0.1	<0.1	0	[NT]	
Chlorpyriphos	mg/kg	0.1	Org-008	[NT]	33	<0.1	<0.1	0	[NT]	
Chlorpyriphos-methyl	mg/kg	0.1	Org-008	[NT]	33	<0.1	<0.1	0	[NT]	
Diazinon	mg/kg	0.1	Org-008	[NT]	33	<0.1	<0.1	0	[NT]	
Dichlorvos	mg/kg	0.1	Org-008	[NT]	33	<0.1	<0.1	0	[NT]	
Dimethoate	mg/kg	0.1	Org-008	[NT]	33	<0.1	<0.1	0	[NT]	
Ethion	mg/kg	0.1	Org-008	[NT]	33	<0.1	<0.1	0	[NT]	
Fenitrothion	mg/kg	0.1	Org-008	[NT]	33	<0.1	<0.1	0	[NT]	
Malathion	mg/kg	0.1	Org-008	[NT]	33	<0.1	<0.1	0	[NT]	
Parathion	mg/kg	0.1	Org-008	[NT]	33	<0.1	<0.1	0	[NT]	
Ronnel	mg/kg	0.1	Org-008	[NT]	33	<0.1	<0.1	0	[NT]	
Surrogate TCMX	%		Org-008	[NT]	33	96	95	1	[NT]	

QUALITY CONT	ROL: Acid E	xtractabl	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	[NT]
Date prepared	-			15/02/2018	1	15/02/2018	15/02/2018		15/02/2018	[NT]
Date analysed	-			15/02/2018	1	15/02/2018	15/02/2018		15/02/2018	[NT]
Arsenic	mg/kg	4	Metals-020	<4	1	<4	<4	0	102	[NT]
Cadmium	mg/kg	0.4	Metals-020	<0.4	1	<0.4	<0.4	0	99	[NT]
Chromium	mg/kg	1	Metals-020	<1	1	8	6	29	101	[NT]
Copper	mg/kg	1	Metals-020	<1	1	35	29	19	101	[NT]
Lead	mg/kg	1	Metals-020	<1	1	28	27	4	97	[NT]
Mercury	mg/kg	0.1	Metals-021	<0.1	1	<0.1	<0.1	0	91	[NT]
Nickel	mg/kg	1	Metals-020	<1	1	14	14	0	94	[NT]
Zinc	mg/kg	1	Metals-020	<1	1	26	25	4	97	[NT]

QUALITY CONT	ROL: Acid E	Extractabl	e metals in soil			covery %				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	33	15/02/2018	15/02/2018		[NT]	[NT]
Date analysed	-			[NT]	33	15/02/2018	15/02/2018		[NT]	[NT]
Arsenic	mg/kg	4	Metals-020	[NT]	33	<4	<4	0	[NT]	[NT]
Cadmium	mg/kg	0.4	Metals-020	[NT]	33	<0.4	<0.4	0	[NT]	[NT]
Chromium	mg/kg	1	Metals-020	[NT]	33	4	4	0	[NT]	[NT]
Copper	mg/kg	1	Metals-020	[NT]	33	4	4	0	[NT]	[NT]
Lead	mg/kg	1	Metals-020	[NT]	33	75	77	3	[NT]	[NT]
Mercury	mg/kg	0.1	Metals-021	[NT]	33	0.2	0.3	40	[NT]	[NT]
Nickel	mg/kg	1	Metals-020	[NT]	33	5	4	22	[NT]	[NT]
Zinc	mg/kg	1	Metals-020	[NT]	33	9	11	20	[NT]	[NT]

QUALITY CONT	ROL: Acid E	xtractable	e metals in soil			Du	Spike Re	e Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	4	15/02/2018	15/02/2018		[NT]	[NT]
Date analysed	-			[NT]	4	15/02/2018	15/02/2018		[NT]	[NT]
Arsenic	mg/kg	4	Metals-020	[NT]	4	13	11	17	[NT]	[NT]
Cadmium	mg/kg	0.4	Metals-020	[NT]	4	3	2	40	[NT]	[NT]
Chromium	mg/kg	1	Metals-020	[NT]	4	29	30	3	[NT]	[NT]
Copper	mg/kg	1	Metals-020	[NT]	4	860	880	2	[NT]	[NT]
Lead	mg/kg	1	Metals-020	[NT]	4	1700	1800	6	[NT]	[NT]
Mercury	mg/kg	0.1	Metals-021	[NT]	4	0.5	0.4	22	[NT]	[NT]
Nickel	mg/kg	1	Metals-020	[NT]	4	25	31	21	[NT]	[NT]
Zinc	mg/kg	1	Metals-020	[NT]	4	1200	1300	8	[NT]	[NT]

QUALITY CONT	ROL: Acid E	xtractabl	e metals in soil			Du	Spike Re	Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	32	15/02/2018	15/02/2018		[NT]	
Date analysed	-			[NT]	32	15/02/2018	15/02/2018		[NT]	
Arsenic	mg/kg	4	Metals-020	[NT]	32	<4	<4	0	[NT]	
Cadmium	mg/kg	0.4	Metals-020	[NT]	32	<0.4	<0.4	0	[NT]	
Chromium	mg/kg	1	Metals-020	[NT]	32	9	11	20	[NT]	
Copper	mg/kg	1	Metals-020	[NT]	32	8	9	12	[NT]	
Lead	mg/kg	1	Metals-020	[NT]	32	32	44	32	[NT]	
Mercury	mg/kg	0.1	Metals-021	[NT]	32	1.7	1.8	6	[NT]	
Nickel	mg/kg	1	Metals-020	[NT]	32	3	3	0	[NT]	
Zinc	mg/kg	1	Metals-020	[NT]	32	40	39	3	[NT]	[NT]

QUALITY CONT	ROL: Acid E	xtractabl	e metals in soil			Spike Re	covery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	38	15/02/2018	15/02/2018		[NT]	
Date analysed	-			[NT]	38	15/02/2018	15/02/2018		[NT]	
Arsenic	mg/kg	4	Metals-020	[NT]	38	12	12	0	[NT]	
Cadmium	mg/kg	0.4	Metals-020	[NT]	38	<0.4	<0.4	0	[NT]	
Chromium	mg/kg	1	Metals-020	[NT]	38	8	8	0	[NT]	
Copper	mg/kg	1	Metals-020	[NT]	38	10	10	0	[NT]	
Lead	mg/kg	1	Metals-020	[NT]	38	13	15	14	[NT]	
Mercury	mg/kg	0.1	Metals-021	[NT]	38	3.5	3.3	6	[NT]	
Nickel	mg/kg	1	Metals-020	[NT]	38	3	3	0	[NT]	
Zinc	mg/kg	1	Metals-020	[NT]	38	89	97	9	[NT]	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Control	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.
Accedentian Deintrian V	Notes Outidalizes as severe and that The mastelement Opliferes, French Fritans and S. C. Opli Javala, and Java them

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Report Comments

PAHs in Soil 1/1d: - The RPD for duplicate results is accepted due to the non homogenous nature of the sample/s.

martens consulting engineers since 1989

SOIL ANALYSIS CHAIN OF CUSTODY FORM

					Additional Testin	D				
Name	P1706332	2 - 119 Bart	on St, Monte	rey DSI						
Martens Contact Officer	Robert N	Aehaffey				Contact Email	rmehaffey@m	artens.com.au		
	Sample I	Date	13 Febru	Jary 2018	Dispatch Date	14 February 2018	Turnaround Tin	ne	standard	
Sampling and Shipping	Our Refe	rence	P170633	12COC01V01		Shipping Method (X)	Han	d Pos	Courie	×
	On Ice ()	(X	×	No Ice (X)	Other	(x)				
					Laboratory					
Name	EnviroLc	dz								
Sample Delivery Address	12 Ashle	sy Street, (Chatswood							
Delivery Contact	Name	Aileen		Phone	9910 6200	Fax	Email	ahie@envirolo	abservices.com.	Ŋ
Please Send Report By (X)	Post		Fax	Email	X Reportin	g Email Address	ehaffey@martens	com.au, gtaylo	or@martens.com	an
Sample ID			Combo 5b		BHM	BTEX		TRH	НОГ	
I 6332/BH101/0.15			×							
2 6332/BH101/0.7									×	
3 6332/BH101/1.2	- 5								×	
4 6332/BH101/1.5	A		×			Envirolab Services				
5 6332/BH101/2.0					ENVIROUMS	CLORENCE 12 ASING 2067			××	
6 6332/BH102/0.2					4000	Ph: (02) 9910 6200			×	
4 6332/BH102/0.5					Inb No:	061581			<	
6 6332/BH102/1.8						11.2.18			×	
10 6332/BH103/0.2			×		Date Rec	eived: 11.45				
11 6332/BH103/0.5			×		Time Rec	eived: 11 10 1º C				
12 6332/BH103/1.1					Received	by: Je 171			×	
13 6332/BH104/0.2					Tentic	Dol/Amblent			×	
1 W 6332/BH104/0.7					Cooling	ice/icepack			×	
15 6332/BH105/0.15					Condity	IntacuBroken/None			××	
16 6332/BH105/0.4									× >	
12 6332/BH106/0.1			×						<	
19 6332/BH106/0.4			< ×							
20 6332/BH106/0.65									×	
		5			ی اور	Head Office Suite 201, Level 2	20 George Street	> mail@rr > www.m	hartens.com.au artens.com.au	
		Keu	213 76			Hornsby NSW 20.	77, Australia Fax 02 9476 8767	MARTENS 8 ABN 85 070 3	ASSOCIATES P/L	
		19	2.18 11:1	45	1 !					

RS170 SOIL ANALYSIS CHAIN OF CUSTODY

Page of

HOLD		X	×	×	×	X	×		X	×	×			×	×	×					
TRH																			a desired and the second s	x	
BTEX																					×
8HM																	×	×			
Combo 5b	×							×				×	X								
Sample ID	6332/BH107/0.1	6332/BH107/0.3-0.4	6332/BH107/0.6	6332/BH107/1.45	6332/BH108/0.05	6332/BH108/0.3	6332/BH108/0.6	6332/BH109/0.1	6332/BH109/0.25	6332/BH109/0.5	6332/BH109/1.0	6332/BH110/0.05	6332/BH110/0.6	6332/BH110/0.8	6332/55101	6332/SS102	6332/DUP101	6332/DUP102		Trip Blank	Irip Spike
	12	22	23	24	25	26	27	28	29	30	12	32	33	34	35	26	33	38		39	40

Extra 41 BH105/2.0 JE Rec: JE 14/2/16

Aileen Hie

From:Robert Mehaffey <rmehaffey@martens.com.au>Sent:Wednesday, 21 February 2018 2:40 PMTo:Ken NguyenCc:Gray Taylor; Aileen HieSubject:RE: Results for Registration 185170 P1706332 - 119 Barton St Monterey DSIAttachments:185170-coc.pdf

Hi Ken,

Can we please get some additional testing completed:

5 o 6332/BH101/2.0 – Tested for Combo 5b

Standard turnaround time please.

Let me know if there are any issues.

Best regards,

Robert Mehaffey Environmental Engineer BEna (Civil/Environmental)

Martens & Associates Pty Ltd Suite 201, 20 George St Hornsby, NSW 2077 P + 61 2 9476 9999 F + 61 2 9476 8767 www.martens.com.au Envirolab Ref: 185170A Due: 28/2/18 Std T/A.

From: Ken Nguyen [mailto:KNguyen@envirolab.com.au]
Sent: Tuesday, 20 February 2018 8:00 PM
To: Lara Tintinger; Robert Mehaffey; Gray Taylor
Subject: Results for Registration 185170 P1706332 - 119 Barton St Monterey DSI

Please refer to attached for: a copy of the Certificate of Analysis a copy of the COC/paperwork received from you ESDAT Extracts an Excel or .csv file containing the results a copy of the Invoice Please note that a hard copy will not be posted.

We have a new reporting format and would welcome your feedback. Sydney@envirolab.com.au

Enquiries should be made directly to: customerservice@envirolab.com.au

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 185170-A

Client Details	
Client	Martens & Associates Pty Ltd
Attention	Robert Mehaffey
Address	Suite 201, 20 George St, Hornsby, NSW, 2077

Sample Details	
Your Reference	P1706332 - 119 Barton St Monterey DSI
Number of Samples	Additional Testing on 1 Soil
Date samples received	14/02/2018
Date completed instructions received	21/02/2018

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details				
Date results requested by	28/02/2018			
Date of Issue	26/02/2018			
NATA Accreditation Number 2901. This document shall not be reproduced except in full.				
Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *				

Results Approved By Dragana Tomas, Senior Chemist Long Pham, Team Leader, Metals

Steven Luong, Senior Chemist

Authorised By

20

David Springer, General Manager

vTRH(C6-C10)/BTEXN in Soil		
Our Reference		185170-A-5
Your Reference	UNITS	6332/BH101
Depth		2.0
Date Sampled		13/02/2018
Type of sample		soil
Date extracted	-	22/02/2018
Date analysed	-	22/02/2018
TRH C ₆ - C ₉	mg/kg	<25
TRH C6 - C10	mg/kg	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25
Benzene	mg/kg	<0.2
Toluene	mg/kg	<0.5
Ethylbenzene	mg/kg	<1
m+p-xylene	mg/kg	<2
o-Xylene	mg/kg	<1
naphthalene	mg/kg	<1
Total +ve Xylenes	mg/kg	<1
Surrogate aaa-Trifluorotoluene	%	99

svTRH (C10-C40) in Soil		
Our Reference		185170-A-5
Your Reference	UNITS	6332/BH101
Depth		2.0
Date Sampled		13/02/2018
Type of sample		soil
Date extracted	-	22/02/2018
Date analysed	-	23/02/2018
TRH C ₁₀ - C ₁₄	mg/kg	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100
TRH >C10 -C16	mg/kg	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100
Total +ve TRH (>C10-C40)	mg/kg	<50
Surrogate o-Terphenyl	%	77

PAHs in Soil		
Our Reference		185170-A-5
Your Reference	UNITS	6332/BH101
Depth		2.0
Date Sampled		13/02/2018
Type of sample		soil
Date extracted	-	22/02/2018
Date analysed	-	22/02/2018
Naphthalene	mg/kg	<0.1
Acenaphthylene	mg/kg	<0.1
Acenaphthene	mg/kg	<0.1
Fluorene	mg/kg	<0.1
Phenanthrene	mg/kg	<0.1
Anthracene	mg/kg	<0.1
Fluoranthene	mg/kg	<0.1
Pyrene	mg/kg	<0.1
Benzo(a)anthracene	mg/kg	<0.1
Chrysene	mg/kg	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2
Benzo(a)pyrene	mg/kg	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1
Total +ve PAH's	mg/kg	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5
Surrogate p-Terphenyl-d14	%	97

Organochlorine Pesticides in soil		
Our Reference		185170-A-5
Your Reference	UNITS	6332/BH101
Depth		2.0
Date Sampled		13/02/2018
Type of sample		soil
Date extracted	-	22/02/2018
Date analysed	-	23/02/2018
нсв	mg/kg	<0.1
alpha-BHC	mg/kg	<0.1
gamma-BHC	mg/kg	<0.1
beta-BHC	mg/kg	<0.1
Heptachlor	mg/kg	<0.1
delta-BHC	mg/kg	<0.1
Aldrin	mg/kg	<0.1
Heptachlor Epoxide	mg/kg	<0.1
gamma-Chlordane	mg/kg	<0.1
alpha-chlordane	mg/kg	<0.1
Endosulfan I	mg/kg	<0.1
pp-DDE	mg/kg	<0.1
Dieldrin	mg/kg	<0.1
Endrin	mg/kg	<0.1
pp-DDD	mg/kg	<0.1
Endosulfan II	mg/kg	<0.1
pp-DDT	mg/kg	<0.1
Endrin Aldehyde	mg/kg	<0.1
Endosulfan Sulphate	mg/kg	<0.1
Methoxychlor	mg/kg	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1
Surrogate TCMX	%	94

Organophosphorus Pesticides		
Our Reference		185170-A-5
Your Reference	UNITS	6332/BH101
Depth		2.0
Date Sampled		13/02/2018
Type of sample		soil
Date extracted	-	22/02/2018
Date analysed	-	23/02/2018
Azinphos-methyl (Guthion)	mg/kg	<0.1
Bromophos-ethyl	mg/kg	<0.1
Chlorpyriphos	mg/kg	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1
Diazinon	mg/kg	<0.1
Dichlorvos	mg/kg	<0.1
Dimethoate	mg/kg	<0.1
Ethion	mg/kg	<0.1
Fenitrothion	mg/kg	<0.1
Malathion	mg/kg	<0.1
Parathion	mg/kg	<0.1
Ronnel	mg/kg	<0.1
Surrogate TCMX	%	94

Acid Extractable metals in soil		
Our Reference		185170-A-5
Your Reference	UNITS	6332/BH101
Depth		2.0
Date Sampled		13/02/2018
Type of sample		soil
Date prepared	-	22/02/2018
Date analysed	-	22/02/2018
Arsenic	mg/kg	<4
Cadmium	mg/kg	<0.4
Chromium	mg/kg	2
Copper	mg/kg	11
Lead	mg/kg	30
Mercury	mg/kg	<0.1
Nickel	mg/kg	<1
Zinc	mg/kg	16

Moisture		
Our Reference		185170-A-5
Your Reference	UNITS	6332/BH101
Depth		2.0
Date Sampled		13/02/2018
Type of sample		soil
Date prepared	-	22/02/2018
Date analysed	-	22/02/2018
Moisture	%	5.7

Method ID	Methodology Summary
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.
Org-008	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" are="" at="" conservative<br="" is="" most="" pql.="" the="" this="">approach and can give false positive TEQs given that PAHs that contribute to the TEQ calculation may not be present. 2. 'EQ zero'values are assuming all contributing PAHs reported as <pql and<br="" approach="" are="" conservative="" is="" least="" the="" this="" zero.="">is more susceptible to false negative TEQs when PAHs that contribute to the TEQ calculation are present but below PQL. 3. 'EQ half PQL'values are assuming all contributing PAHs reported as <pql a="" are="" half="" hence="" mid-point<br="" pql.="" stipulated="" the="">between the most and least conservative approaches above. Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PAHs" is simply a sum of the positive individual PAHs.</pql></pql></pql>

Method ID	Methodology Summary
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CONT	QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Soil					Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			22/02/2018	[NT]		[NT]	[NT]	22/02/2018	
Date analysed	-			22/02/2018	[NT]		[NT]	[NT]	22/02/2018	
TRH C ₆ - C ₉	mg/kg	25	Org-016	<25	[NT]		[NT]	[NT]	106	
TRH C ₆ - C ₁₀	mg/kg	25	Org-016	<25	[NT]		[NT]	[NT]	106	
Benzene	mg/kg	0.2	Org-016	<0.2	[NT]		[NT]	[NT]	111	
Toluene	mg/kg	0.5	Org-016	<0.5	[NT]		[NT]	[NT]	108	
Ethylbenzene	mg/kg	1	Org-016	<1	[NT]		[NT]	[NT]	99	
m+p-xylene	mg/kg	2	Org-016	<2	[NT]		[NT]	[NT]	105	
o-Xylene	mg/kg	1	Org-016	<1	[NT]		[NT]	[NT]	96	
naphthalene	mg/kg	1	Org-014	<1	[NT]		[NT]	[NT]	[NT]	
Surrogate aaa-Trifluorotoluene	%		Org-016	110	[NT]		[NT]	[NT]	105	

QUALITY CONTROL: svTRH (C10-C40) in Soil						Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			22/02/2018	[NT]		[NT]	[NT]	22/02/2018	
Date analysed	-			23/02/2018	[NT]		[NT]	[NT]	23/02/2018	
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-003	<50	[NT]		[NT]	[NT]	120	
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	97	
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	92	
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-003	<50	[NT]		[NT]	[NT]	120	
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	97	
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	92	
Surrogate o-Terphenyl	%		Org-003	82	[NT]	[NT]	[NT]	[NT]	90	[NT]

QUALIT	Y CONTRO	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			22/02/2018	[NT]		[NT]	[NT]	22/02/2018	
Date analysed	-			22/02/2018	[NT]		[NT]	[NT]	22/02/2018	
Naphthalene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	113	
Acenaphthylene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	[NT]	
Acenaphthene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	[NT]	
Fluorene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	125	
Phenanthrene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	109	
Anthracene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	[NT]	
Fluoranthene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	111	
Pyrene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	118	
Benzo(a)anthracene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	[NT]	
Chrysene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	114	
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-012	<0.2	[NT]		[NT]	[NT]	[NT]	
Benzo(a)pyrene	mg/kg	0.05	Org-012	<0.05	[NT]		[NT]	[NT]	113	
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	[NT]	
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	[NT]	
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate p-Terphenyl-d14	%		Org-012	104	[NT]	[NT]	[NT]	[NT]	124	[NT]

QUALITY CONTR	ROL: Organo	chlorine I	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			22/02/2018	[NT]		[NT]	[NT]	22/02/2018	
Date analysed	-			23/02/2018	[NT]		[NT]	[NT]	23/02/2018	
НСВ	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	[NT]	
alpha-BHC	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	85	
gamma-BHC	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	[NT]	
beta-BHC	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	88	
Heptachlor	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	94	
delta-BHC	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	[NT]	
Aldrin	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	89	
Heptachlor Epoxide	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	95	
gamma-Chlordane	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	[NT]	
alpha-chlordane	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	[NT]	
Endosulfan I	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	[NT]	
pp-DDE	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	103	
Dieldrin	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	106	
Endrin	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	96	
pp-DDD	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	124	
Endosulfan II	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	[NT]	
pp-DDT	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	[NT]	
Endrin Aldehyde	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	[NT]	
Endosulfan Sulphate	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	105	
Methoxychlor	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate TCMX	%		Org-005	97	[NT]	[NT]	[NT]	[NT]	113	[NT]

QUALITY CONT	ROL: Organ	ophosph	orus Pesticides			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			22/02/2018	[NT]		[NT]	[NT]	22/02/2018	[NT]
Date analysed	-			23/02/2018	[NT]		[NT]	[NT]	23/02/2018	[NT]
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-008	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
Bromophos-ethyl	mg/kg	0.1	Org-008	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
Chlorpyriphos	mg/kg	0.1	Org-008	<0.1	[NT]		[NT]	[NT]	103	[NT]
Chlorpyriphos-methyl	mg/kg	0.1	Org-008	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
Diazinon	mg/kg	0.1	Org-008	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
Dichlorvos	mg/kg	0.1	Org-008	<0.1	[NT]		[NT]	[NT]	106	[NT]
Dimethoate	mg/kg	0.1	Org-008	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
Ethion	mg/kg	0.1	Org-008	<0.1	[NT]		[NT]	[NT]	112	[NT]
Fenitrothion	mg/kg	0.1	Org-008	<0.1	[NT]		[NT]	[NT]	114	[NT]
Malathion	mg/kg	0.1	Org-008	<0.1	[NT]		[NT]	[NT]	110	[NT]
Parathion	mg/kg	0.1	Org-008	<0.1	[NT]		[NT]	[NT]	118	[NT]
Ronnel	mg/kg	0.1	Org-008	<0.1	[NT]		[NT]	[NT]	115	[NT]
Surrogate TCMX	%		Org-008	97	[NT]		[NT]	[NT]	102	[NT]

QUALITY CONTROL: Acid Extractable metals in soil				Du	plicate	Spike Recovery %				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			22/02/2018	[NT]		[NT]	[NT]	22/02/2018	
Date analysed	-			22/02/2018	[NT]		[NT]	[NT]	22/02/2018	
Arsenic	mg/kg	4	Metals-020	<4	[NT]		[NT]	[NT]	108	
Cadmium	mg/kg	0.4	Metals-020	<0.4	[NT]		[NT]	[NT]	99	
Chromium	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	106	
Copper	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	111	
Lead	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	105	
Mercury	mg/kg	0.1	Metals-021	<0.1	[NT]		[NT]	[NT]	104	
Nickel	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	107	[NT]
Zinc	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	108	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Control	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.
Australian Drinking	Nater Guidelines recommend that Thermotolerant Coliform Eaecal Enterococci. & E Coli levels are less than

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Aileen Hie

From: Sent: To: Cc: Subject: Attachments: Robert Mehaffey <rmehaffey@martens.com.au> Friday, 16 February 2018 3:29 PM Aileen Hie Gray Taylor RE: 6332 COC P1706332JCOC01V01.pdf

Hi Aileen,

Could we please also get the following additional testing completed for these samples:

6332/BH103/1.1 – tested for CEC and pH.
6332/BH106/0.65 - tested for CEC and pH.
6332/BH110/0.8 - tested for CEC and pH.

Please let me know If there are any issues.

Best regards,

Envirolab Ref: 185170B Due: 28/2/18

Robert Mehaffey Environmental Engineer BEng (Civil/Environmental)

Martens & Associates Pty Ltd Suite 201, 20 George St Hornsby, NSW 2077 P + 61 2 9476 9999 F + 61 2 9476 8767 www.martens.com.au

From: Robert Mehaffey Sent: Tuesday, 13 February 2018 3:37 PM To: 'Aileen Hie' Cc: Gray Taylor Subject: 6332 COC

Hi Aileen,

Please find attached COC for job P6332, samples will be sent to Envirolab tomorrow morning.

Let me know if there are any issues.

Best regards,

Robert Mehaffey Environmental Engineer BEng (Civil/Environmental)

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 185170-B

Client Details	
Client	Martens & Associates Pty Ltd
Attention	Robert Mehaffey
Address	Suite 201, 20 George St, Hornsby, NSW, 2077

Sample Details	
Your Reference	P1706332 - 119 Barton St Monterey DSI
Number of Samples	Additional Testing on 3 Soils
Date samples received	14/02/2018
Date completed instructions received	16/02/2018

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details	
Date results requested by	28/02/2018
Date of Issue	28/02/2018
NATA Accreditation Number 2901. This do	ocument shall not be reproduced except in full.
Accredited for compliance with ISO/IEC 17	7025 - Testing. Tests not covered by NATA are denoted with *

Results Approved By Leon Ow, Chemist Nick Sarlamis, Inorganics Supervisor

Authorised By

20

David Springer, General Manager

CEC				
Our Reference		185170-B-12	185170-B-20	185170-B-34
Your Reference	UNITS	6332/BH103	6332/BH106	6332/BH110
Depth		1.1	0.65	0.8
Date Sampled		13/02/2018	13/02/2018	13/02/2018
Type of sample		soil	soil	soil
Date prepared	-	27/02/2018	27/02/2018	27/02/2018
Date analysed	-	27/02/2018	27/02/2018	27/02/2018
Exchangeable Ca	meq/100g	<0.1	0.3	0.3
Exchangeable K	meq/100g	<0.1	<0.1	<0.1
Exchangeable Mg	meq/100g	<0.1	<0.1	<0.1
Exchangeable Na	meq/100g	<0.1	<0.1	<0.1
Cation Exchange Capacity	meq/100g	<1	<1	<1

Misc Inorg - Soil				
Our Reference		185170-B-12	185170-B-20	185170-B-34
Your Reference	UNITS	6332/BH103	6332/BH106	6332/BH110
Depth		1.1	0.65	0.8
Date Sampled		13/02/2018	13/02/2018	13/02/2018
Type of sample		soil	soil	soil
Date prepared	-	27/02/2018	27/02/2018	27/02/2018
Date analysed	-	27/02/2018	27/02/2018	27/02/2018
pH 1:5 soil:water	pH Units	5.3	7.2	6.8

Method ID	Methodology Summary
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Metals-009	Determination of exchangeable cations and cation exchange capacity in soils using 1M Ammonium Chloride exchange and ICP-AES analytical finish.

QU.	ALITY CONT	Du	plicate	Spike Recovery %						
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			27/02/2018	[NT]		[NT]	[NT]	27/02/2018	
Date analysed	-			27/02/2018	[NT]		[NT]	[NT]	27/02/2018	
Exchangeable Ca	meq/100g	0.1	Metals-009	<0.1	[NT]		[NT]	[NT]	105	
Exchangeable K	meq/100g	0.1	Metals-009	<0.1	[NT]		[NT]	[NT]	113	
Exchangeable Mg	meq/100g	0.1	Metals-009	<0.1	[NT]		[NT]	[NT]	102	
Exchangeable Na	meq/100g	0.1	Metals-009	<0.1	[NT]	[NT]	[NT]	[NT]	107	[NT]

QUALITY	CONTROL:	Misc Ino		Du	plicate		Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]		
Date prepared	-			27/02/2018	[NT]		[NT]	[NT]	27/02/2018			
Date analysed	-			27/02/2018	[NT]		[NT]	[NT]	27/02/2018			
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	[NT]	[NT]	[NT]	[NT]	103	[NT]		

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.
Accelling Deindeinen I	Notes Ovidalizes as several that Themsetalement Orliferes, Freed, Fatancessi, & F. Orli laurels are less than

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

19 Attachment H – Laboratory Summary Tables

Contamination Assessment 119 Barton Rd, Monterey, NSW P1706332JR01V01 – March 2018 Page 104

	Halogenated Benzenes Organochlorine Pesticides																	Org	anopho	sphoro	us Pestir	cides				Pesticides							
	Hexachlorobenzene	4,4-DDE	a-BHC	Aldrin	b-BHC	Chlordane (cis)	Chlordane (trans)	d-BHC	000	DDT	DDT+DDE+DDD	Dieldrin	Endosulfan I	Endosulfan II	Endosulfan sulphate	Endrin	Endrin aldehyde	g-BHC (Lin dane)	, Heptachlor	. Heptachlor epoxide	. Methoxychlor	Azin ophos me thyl	Bromophos-ethyl	, Chlorpyrifos	Chlorpyrifos-methyl	Diazinon	Dichlorvos	Dimethoate	Ethion	Fenitrothion	Malathion	Ronnel	Parathion
FOI	mg/kg	mg/kg	mg/ kg	mg/kg	mg/ kg	mg/ kg	с mg/ка	0.1	g mg/kg	1 mg/kg	5 mg/kg	mg/ kg		mg/kg	1 mg/kg	мg	mg/kg	mg/kg	mg/ kg	mg/ kg	mg/kg	0.1	0.1	0.1	mg/ kg	mg/ kg	mg/kg	mg/kg	mg/kg	mg/kg	0.1	0.1	0.1
NERM 2013 Table 10(1) HILLS Res & Soil	10	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	240	0.1	0.1	0.1	0.1	10	0.1	0.1	6	0.1	300	0.1	0.1	160	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Site Specific FIL	10							-		180	240					10			-		300			100							-	_	
										200																	<u> </u>						
Field ID Sample Depth Avg																																	
6332/BH101 0.15	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1
6332/BH101 1.5	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1
6332/BH101 2	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1
6332/BH103 0.2	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1
6332/BH103 0.5	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1
6332/BH106 0.25	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
6332/BH106 0.4	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
6332/BH107 0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
6332/BH109 0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
6332/BH110 0.05	<0.1	0.2	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	0.2	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
6332/BH110 0.6	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Statistical Summary																																	
Number of Results	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11
Number of Detects	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Minimum Concentration	<0.1	<0.1	< 0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	<0.1	< 0.1	<0.1
Minimum Detect	ND	0.2	ND	ND	ND	ND	ND	ND	ND	ND	0.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Maximum Concentration	<0.1	0.2	< 0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	< 0.1	<0.1	0.2	<0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	< 0.1	<0.1
Maximum Detect	ND	0.2	ND	ND	ND	ND	ND	ND	ND	ND	0.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Average Concentration	0.05	0.064	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.064	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Median Concentration	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Standard Deviation	0	0.045	0	0	0	0	0	0	0	0	0.045	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Number of Guideline Exceedances	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Number of Guideline Exceedances(Detects Only)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	_																															
				BTEX										P	AH/Phe	nols											TP	н				
	Berzene	Et hy lbenzene	Toluene	Xylene (m & p)	Xylene (o)	Xylene Total	C6-C10 less B TEX(F1)	Acenaphthene	Acenaphthylene	Anthra cene	Benz (a) and hr ac ene	Berzo(a) pyrene	Benzo(g,h,i)perylene	Chrysene	Dibenz(a,h) an thra cene	Carcinogenic PAHs (as B(a)P TPE)	Fluorant hene	Fluorene	indeno(1,2,3-ç,d)pyrene	Naphthalene	Phenanthrene	Pyrene	C10-C16	C16-C34	C34-C40	F2-NAPHTHALENE	ю-ю	C10 - C14	C15 - C28	C29-C36	C10 - C40 (Sum of total)	C6-C10
	mg/k	g mg/k	g mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg r	ng/kg r	mg/kg	ng/kg
EQL	0.2	1	0.5	2	1	1	25	0.1	0.1	0.1	0.1	0.05	0.1	0.1	0.1		0.1	0.1	0.1	0.1	0.1	0.1	50	100	100	50	25	50	100	100	50	25
NEPM 2013 Table 1A(1) HILs Res A Soil																3																
NEPM 2013 Table 1A(3) Res A/B Soil HSL for Vapour Intrusion, Sand																																
0-1m	0.5	55	160			40	45													3						110						
1-2m	0.5	NL	220			60	70													NL						240						
2-4m	0.5	NL	310			95	110													NL						440						
≻4m	0.5	NL	540			170	200													NL						NL						
NEPM 2013 Table 18(6) ESLs for Urban Res. Coarse Soil	-																															
0-2m	50	70	85			105	180					0.7												300	2800	120				_		
NEPM 2013 Table 1B(7) Management Limits in Res / Parkland, Coarse Soil			-										_										1000	2500	10000	_		_		_	_	700
Site Specific EIL			-																	170												
Field_ID Sample_Depth_A	vg																															
6332/BH101 0.15	<0.2	<1	< 0.5	<2	<1	<1	<25	0.1	< 0.1	0.2	0.5	0.53	0.3	0.7	< 0.1	0.67	1.3	< 0.1	0.3	< 0.1	0.8	1.3	<50	<100	<100	<50	<25	<50	<100	<100	<50	<25
6332/BH101 1.5	<0.2	<1	< 0.5	<2	<1	<1	<25	< 0.1	0.5	0.8	2.3	3.1	2.9	3.2	0.4	4.051	8.3	0.2	2.6	< 0.1	4.3	7.9	<50	240	<100	<50	<25	<50	140	120	240	<25
5332/BH101 2	<0.2	<1	< 0.5	<2	<1	<1	<25	< 0.1	< 0.1	< 0.1	< 0.1	< 0.05	< 0.1	< 0.1	< 0.1	< 0.172	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<50	<100	<100	<50	<25	<50	<100	<100	<50	<25
6332/BH103 0.2	<0.2	<1	< 0.5	<2	<1	<1	<25	< 0.1	< 0.1	< 0.1	0.2	< 0.05	< 0.1	0.2	< 0.1	0.1025	0.3	< 0.1	< 0.1	< 0.1	0.3	0.3	<50	260	<100	<50	<25	<50	170	140	260	<25
6332/BH103 0.5	<0.2	<1	< 0.5	<2	<1	<1	<25	< 0.1	< 0.1	< 0.1	< 0.1	< 0.05	< 0.1	< 0.1	< 0.1	< 0.172	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<50	<100	<100	<50	<25	<50	<100	<100	<50	<25
6332/BH106 0.25	<0.2	<1	< 0.5	<2	<1	<1	<25	< 0.1	< 0.1	< 0.1	< 0.1	< 0.05	< 0.1	< 0.1	< 0.1	< 0.172	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<50	<100	<100	<50	<25	<50	<100	<100	<50	<25
6332/BH106 0.4	<0.2	<1	< 0.5	<2	<1	<1	<25	< 0.1	< 0.1	< 0.1	0.1	< 0.05	< 0.1	0.2	< 0.1	0.0925	0.3	<0.1	< 0.1	<1-0.1	0.6	0.2	<50	<100	<100	<50	<25	<50	<100	<100	<50	<25
6332/BH107 0.1	<0.2	<1	< 0.5	<2	<1	<1	<25	< 0.1	< 0.1	< 0.1	< 0.1	< 0.05	< 0.1	< 0.1	< 0.1	< 0.172	< 0.1	< 0.1	< 0.1		< 0.1	< 0.1	<50	<100	<100	<50	<25	<50	<100	<100	<50	<25
6332/BH109 0.1	<0.2	<1	< 0.5	<2	<1	<1	<25	< 0.1	< 0.1	< 0.1	< 0.1	< 0.05	< 0.1	< 0.1	< 0.1	< 0.172	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<50	<100	<100	<50	<25	<50	<100	<100	<50	<25
6332/BH110 0.05	<0.2	<1	< 0.5	<2	<1	<1	<25	< 0.1	< 0.1	< 0.1	< 0.1	< 0.05	< 0.1	< 0.1	< 0.1	< 0.172	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<50	<100	<100	<50	<25	<50	<100	<100	<50	<25
6332/BH110 0.6	<0.2	<1	< 0.5	<2	<1	<1	<25	< 0.1	< 0.1	< 0.1	< 0.1	< 0.05	< 0.1	< 0.1	< 0.1	< 0.172	0.1	< 0.1	< 0.1	< 0.1	0.3	< 0.1	<50	<100	<100	<50	<25	<50	<100	<100	<50	<25
Statistical Summary																																
Number of Results	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11
Number of Detects	0	0	0	0	0	0	0	1	1	2	4	2	2	4	1	4	5	1	2	1	5	4	0	2	0	0	0	0	2	2	2	0
Minimum Concentration	<0.2	<1	<0.5	<2	<1	<1	<25	<0.1	< 0.1	< 0.1	<0.1	< 0.05	< 0.1	< 0.1	< 0.1	0.0925	<0.1	<0.1	<0.1	<0.1	< 0.1	< 0.1	<50	<100	<100	<50	<25	<50	<100	<100	<50	<25
Minimum Detect	ND	ND	ND	ND	ND	ND	ND	0.1	0.5	0.2	0.1	0.53	0.3	0.2	0.4	0.0925	0.1	0.2	0.3	ND	0.3	0.2	ND	240	ND	ND	ND	ND	140	120	240	ND
Maximum Concentration	<0.2	<1	<0.5	<2	<1	<1	<25	0.1	0.5	0.8	2.3	3.1	2.9	3.2	0.4	4.051	8.3	0.2	2.6	0.1	4.3	7.9	<50	260	<100	<50	<25	<50	170	140	260	<25
Maximum Detect	ND	ND	ND	ND	ND	ND	ND	0.1	0.5	0.8	2.3	3.1	2.9	3.2	0.4	4.051	8.3	0.2	2.6	0.1	4.3	7.9	ND	260	ND	ND	ND	ND	170	140	260	ND
Average Concentration	0.1	0.5	0.25	1	0.5	0.5	13	0.055	0.091	0.13	0.31	0.35	0.33	0.42	0.082	0.5	0.96	0.064	0.3	0.073	0.6	0.91	25	86	50	25	13	25	69	65	66	13
Median Concentration	0.1	0.5	0.25	1	0.5	0.5	12.5	0.05	0.05	0.05	0.05	0.025	0.05	0.05	0.05	0.086	0.05	0.05	0.05	0.05	0.05	0.05	25	50	50	25	12.5	25	50	50	25	12.5
Standard Deviation	0	0	0	0	0	0	0	0.015	0.14	0.23	0.67	0.92	0.86	0.94	0.11	1.2	2.5	0.045	0.77	0.075	1.3	2.3	0	81	0	0	0	0	43	33	91	0
Number of Guideline Exceedances	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Number of Guideline Exceedances(Detects Only)	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

EQL

Site Specific EIL

NEPM 2013 Table 1A(1) HILs Res A Soil

Lead	Metals							
Lead	Arsenic	Cadmium	Chromium (III+VI)	Copper	Mercury	Nickel	Zinc	
mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	
1	4	0.4	1	1	0.1	1	1	
300	100	20		6000	40	400	7400	
1100	100		410	55		35	350	

Field_ID	Sample_Depth_Avg								
6332/BH101	0.15	28	<4	<0.4	8	35	<0.1	14	26
6332/BH101	1.5	1700	13	3	29	860	0.5	25	1200
6332/BH101	2	30	<4	<0.4	2	11	<0.1	<1	16
6332/BH103	0.2	15	<4	<0.4	6	57	<0.1	21	12
6332/BH103	0.5	1	<4	< 0.4	<1	1	<0.1	<1	<1
6332/BH106	0.25	4	<4	<0.4	2	3	0.2	4	6
6332/BH106	0.4	19	<4	<0.4	6	15	<0.1	46	15
6332/BH107	0.1	1	<4	<0.4	7	<1	<0.1	1	5
6332/BH109	0.1	3	<4	<0.4	5	2	<0.1	2	17
6332/BH110	0.05	32	<4	<0.4	9	8	1.7	3	40
6332/BH110	0.6	75	<4	<0.4	4	4	0.2	5	9

Statistical Summary

Number of Results	11	11	11	11	11	11	11	11
Number of Detects	11	1	1	10	10	4	9	10
Minimum Concentration	1	<4	<0.4	<1	<1	<0.1	<1	<1
Minimum Detect	1	13	3	2	1	0.2	1	5
Maximum Concentration	1700	13	3	29	860	1.7	46	1200
Maximum Detect	1700	13	3	29	860	1.7	46	1200
Average Concentration	173	3	0.45	7.1	91	0.27	11	122
Median Concentration	19	2	0.2	6	8	0.05	4	15
Standard Deviation	507	3.3	0.84	7.7	256	0.49	14	358
Number of Guideline Exceedances	1	0	0	0	2	0	1	1
Number of Guideline Exceedances(Detects Only)	1	0	0	0	2	0	1	1

20 Attachment I – UCL Calculations

Contamination Assessment 119 Barton Rd, Monterey, NSW P1706332JR01V01 – March 2018 Page 108

	A	В	С	D	E	F	G	Н	I	J	K		L				
1				Ga	mma UCL S	tatistics for	Uncensored	Full Data Se	ets								
2																	
3		User Selec	cted Options														
4	Dat	te/Time of Co	omputation	ProUCL 5.1	roUCL 5.15/03/2018 12:09:50 PM												
5			From File	WorkSheet.	/orkSheet.xls												
6		Ful	Il Precision	OFF	FF												
7		Confidence	Coefficient	95%													
, 8	Number o	of Bootstrap (Operations	2000													
a																	
10																	
11																	
12																	
12	General Statistics																
14			Total	Number of C	bservations	10			Numbe	r of Distinct (Observations	5	9				
14									Number	of Missing C	Observations	S	0				
16					Minimum	1				-	Mear	n	13.7				
17					Maximum	57					Mediar	n	6				
17					SD	18.37				SD of	logged Data	э	1.404				
10				Coefficient	of Variation	1.341					Skewness	5	1.854				
19																	
20						Gamma	GOF Test										
21				A-D T	est Statistic	0.362	0.362 Anderson-Darling Gamma GOF Test										
22				5% A-D C	ritical Value	0.758	Data appear Gamma Distributed at 5% Significance Level										
23				K-S T	K-S Test Statistic 0.177 Kolmogorov-Smirnov Gamma GOF Test												
25				5% K-S C	0.276	Data	a appear Gai	mma Distrib	uted at 5% S	ignificance l	Leve	el					
26				Data	appear Gan	nma Distribu	uted at 5% S	ignificance L	.evel								
27																	
28						Gamma	Statistics										
29					k hat (MLE)	0.731			k :	star (bias coi	rrected MLE)	0.579				
30				The	a hat (MLE)	18.73			Theta	star (bias cor	rrected MLE)	23.67				
31				n	u hat (MLE)	14.63				nu star (bia	as corrected)	11.57				
32			M	LE Mean (bia	s corrected)	13.7		MLE Sd (bias corrected									
33								I	Approximate	Chi Square	Value (0.05)	4.948				
34			Adjus	sted Level of	Significance	0.0267			A	djusted Chi S	Square Value	e	4.22				
35						-	-	-									
36					Ass	uming Gar	ima Distribut	ion									
37	9	95% Approxi	mate Gamm	a UCL (use w	/hen n>=50)	32.05		95% Adj	usted Gamr	na UCL (use	when n<50)	37.57				
38						-											
39						Suggested	UCL to Use										
40			95	% Adjusted G	iamma UCL	37.57											
41																	
42		Note: Sugges	stions regard	ling the selec	tion of a 95%	UCL are pr	ovided to help	p the user to	select the m	nost appropri	ate 95% UC	L.					
43			F	Recommenda	tions are bas	ed upon dat	a size, data c	distribution, a	nd skewnes	S.							
44		These recor	mmendations	s are based u	pon the resul	ts of the sim	ulation studie	es summariz	ed in Singh,	Maichle, and	d Lee (2006)).					
45	Но	wever, simu	lations result	ts will not cov	er all Real W	orld data se	ts; for additio	nal insight th	e user may	want to cons	ult a statistic	cian.					
46																	

	A	В	С	D	E	F	G	Н		J	K		L			
1				Ga	amma UCL S	tatistics for	Uncensored	Full Data Se	ets							
2																
3		User Selec	cted Options													
4	Dat	te/Time of Co	omputation	ProUCL 5.1	roUCL 5.15/03/2018 12:10:09 PM											
5			From File	WorkSheet.	/orkSheet.xls											
6		Ful	Il Precision	OFF												
7		Confidence	Coefficient	95%												
/	Number o	of Bootstrap (Operations	2000												
8		· · ·														
9																
10																
11																
12	12 General Statistics															
13			Total	Number of C	beenvetione	10	otatistics		Numbo	r of Dictingt (beenvotion		0			
14			10181	Number of C	DServations	10			Numbe			5	0			
15						4			Number	of Missing C	observations	5	0			
16					Minimum	1					Mear	ו	9.8			
17					Maximum	46					Mediar	ו	3.5			
18					SD	14.34				SD of	logged Data	â	1.36			
19				Coefficient	of Variation	1.463		Skewness								
20																
21						Gamma	GOF Test									
22				A-D 1	est Statistic	0.605	Anderson-Darling Gamma GOF Test									
23				5% A-D C	ritical Value	0.76	Data appear Gamma Distributed at 5% Significance Level									
24				K-S 1	K-S Test Statistic 0.237 Kolmogorov-Smirnov Gamma GOF Test											
25				5% K-S C	0.277	Data	a appear Ga	mma Distrib	uted at 5% S	ignificance l	Leve	I				
26				Data	appear Gam	nma Distribu	uted at 5% S	ignificance L	.evel							
27																
28						Gamma	Statistics									
29					k hat (MLE)	0.708			k	star (bias cor	rected MLE)	0.562			
30				The	ta hat (MLE)	13.84			Theta	star (bias cor	rected MLE)	17.43			
31		nu hat (MLE)								nu star (bia	s corrected)	11.24			
32			M	LE Mean (bia	s corrected)	9.8		MLE Sd (bias correcte								
33								/	Approximate	Chi Square	Value (0.05)	4.733			
34			Adjus	sted Level of	Significance	0.0267			Ad	djusted Chi S	quare Value	e	4.025			
35												-1				
36					Ass	uming Gam	ma Distribut	tion								
37	{	95% Approxi	mate Gamm	a UCL (use v	/hen n>=50)	23.28		95% Adj	usted Gamr	na UCL (use	when n<50)	27.38			
38							I									
39						Suggested	UCL to Use									
40			95	% Adjusted C	amma UCL	27.38										
40 ∕11																
41		Note: Sugges	stions regard	ling the selec	tion of a 95%	UCL are pro	ovided to help	p the user to	select the m	nost appropri	ate 95% UC	L.				
42			F	Recommenda	tions are bas	ed upon dat	a size, data c	distribution, a	ind skewnes	S.						
43		These recor	mmendations	s are based u	pon the resul	ts of the sim	ulation studie	es summariz	ed in Singh.	Maichle, and	d Lee (2006)).				
44	Hc	wever, simu	lations result	s will not cov	er all Real W	orld data set	ts; for additio	nal insight th	e user mav	want to cons	ult a statistic	cian.				
40									,							